{"title":"粘结剂喷射增材制造工艺制备AlSi-Al2O3金属陶瓷复合材料的反应烧结研究","authors":"V. Sufiiarov, Artem Kantyukov, I. Polozov","doi":"10.37904/metal.2020.3618","DOIUrl":null,"url":null,"abstract":"Metal-ceramic composites are attractive materials for various applications due to their high specific strength, wear resistance, thermal stability, and good high-temperature mechanical properties. Binder jetting additive manufacturing is a promising way of manufacturing metal-ceramic composite parts with complex geometry. In this work, Al 2 O 3 - Si powder blend was used to produce metal-ceramic green-parts by binder jetting process. The green-parts were then subjected to reaction sintering and subsequent liquid metal infiltration with aluminum alloy at 1200 ºC. The microstructure and phase composition of the obtained samples were studied using scanning electron microscopy and X-Ray diffraction analysis. Mechanical properties were evaluated using microhardness measurements and compressive tests.","PeriodicalId":18449,"journal":{"name":"METAL 2020 Conference Proeedings","volume":"10 9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reaction sintering of metal-ceramic AlSi-Al2O3 composites manufactured by binder jetting additive manufacturing process\",\"authors\":\"V. Sufiiarov, Artem Kantyukov, I. Polozov\",\"doi\":\"10.37904/metal.2020.3618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-ceramic composites are attractive materials for various applications due to their high specific strength, wear resistance, thermal stability, and good high-temperature mechanical properties. Binder jetting additive manufacturing is a promising way of manufacturing metal-ceramic composite parts with complex geometry. In this work, Al 2 O 3 - Si powder blend was used to produce metal-ceramic green-parts by binder jetting process. The green-parts were then subjected to reaction sintering and subsequent liquid metal infiltration with aluminum alloy at 1200 ºC. The microstructure and phase composition of the obtained samples were studied using scanning electron microscopy and X-Ray diffraction analysis. Mechanical properties were evaluated using microhardness measurements and compressive tests.\",\"PeriodicalId\":18449,\"journal\":{\"name\":\"METAL 2020 Conference Proeedings\",\"volume\":\"10 9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"METAL 2020 Conference Proeedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"METAL 2020 Conference Proeedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reaction sintering of metal-ceramic AlSi-Al2O3 composites manufactured by binder jetting additive manufacturing process
Metal-ceramic composites are attractive materials for various applications due to their high specific strength, wear resistance, thermal stability, and good high-temperature mechanical properties. Binder jetting additive manufacturing is a promising way of manufacturing metal-ceramic composite parts with complex geometry. In this work, Al 2 O 3 - Si powder blend was used to produce metal-ceramic green-parts by binder jetting process. The green-parts were then subjected to reaction sintering and subsequent liquid metal infiltration with aluminum alloy at 1200 ºC. The microstructure and phase composition of the obtained samples were studied using scanning electron microscopy and X-Ray diffraction analysis. Mechanical properties were evaluated using microhardness measurements and compressive tests.