基于融合策略的增强灰狼优化器光伏模型参数识别

IF 5.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jinkun Luo, Fazhi He, Xiaoxin Gao
{"title":"基于融合策略的增强灰狼优化器光伏模型参数识别","authors":"Jinkun Luo, Fazhi He, Xiaoxin Gao","doi":"10.3233/ica-220693","DOIUrl":null,"url":null,"abstract":"Identifying photovoltaic (PV) parameters accurately and reliably can be conducive to the effective use of solar energy. The grey wolf optimizer (GWO) that was proposed recently is an effective nature-inspired method and has become an effective way to solve PV parameter identification. However, determining PV parameters is typically regarded as a multimodal optimization, which is a challenging optimization problem; thus, the original GWO still has the problem of insufficient accuracy and reliability when identifying PV parameters. In this study, an enhanced grey wolf optimizer with fusion strategies (EGWOFS) is proposed to overcome these shortcomings. First, a modified multiple learning backtracking search algorithm (MMLBSA) is designed to ameliorate the global exploration potential of the original GWO. Second, a dynamic spiral updating position strategy (DSUPS) is constructed to promote the performance of local exploitation. Finally, the proposed EGWOFS is verified by two groups of test data, which include three types of PV test models and experimental data extracted from the manufacturer’s data sheet. Experiments show that the overall performance of the proposed EGWOFS achieves competitive or better results in terms of accuracy and reliability for most test models.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"93 1","pages":"89-104"},"PeriodicalIF":5.8000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An enhanced grey wolf optimizer with fusion strategies for identifying the parameters of photovoltaic models\",\"authors\":\"Jinkun Luo, Fazhi He, Xiaoxin Gao\",\"doi\":\"10.3233/ica-220693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying photovoltaic (PV) parameters accurately and reliably can be conducive to the effective use of solar energy. The grey wolf optimizer (GWO) that was proposed recently is an effective nature-inspired method and has become an effective way to solve PV parameter identification. However, determining PV parameters is typically regarded as a multimodal optimization, which is a challenging optimization problem; thus, the original GWO still has the problem of insufficient accuracy and reliability when identifying PV parameters. In this study, an enhanced grey wolf optimizer with fusion strategies (EGWOFS) is proposed to overcome these shortcomings. First, a modified multiple learning backtracking search algorithm (MMLBSA) is designed to ameliorate the global exploration potential of the original GWO. Second, a dynamic spiral updating position strategy (DSUPS) is constructed to promote the performance of local exploitation. Finally, the proposed EGWOFS is verified by two groups of test data, which include three types of PV test models and experimental data extracted from the manufacturer’s data sheet. Experiments show that the overall performance of the proposed EGWOFS achieves competitive or better results in terms of accuracy and reliability for most test models.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"93 1\",\"pages\":\"89-104\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ica-220693\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-220693","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

摘要

准确、可靠地识别光伏(PV)参数,有利于太阳能的有效利用。近年来提出的灰狼优化器(GWO)是一种有效的自然启发方法,已成为解决PV参数辨识的有效途径。然而,PV参数的确定通常被视为一个多模态优化,这是一个具有挑战性的优化问题;因此,原GWO在识别PV参数时仍然存在准确性和可靠性不足的问题。本文提出了一种基于融合策略的增强型灰狼优化器(EGWOFS)来克服这些缺点。首先,设计了一种改进的多重学习回溯搜索算法(MMLBSA),以改善原始GWO的全局探索潜力。其次,构建了动态螺旋更新位置策略(DSUPS),以提高局部开发绩效。最后,通过两组测试数据验证了所提出的EGWOFS,两组测试数据包括三种光伏测试模型和从制造商数据表中提取的实验数据。实验表明,对于大多数测试模型,所提出的EGWOFS在精度和可靠性方面取得了相当或更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An enhanced grey wolf optimizer with fusion strategies for identifying the parameters of photovoltaic models
Identifying photovoltaic (PV) parameters accurately and reliably can be conducive to the effective use of solar energy. The grey wolf optimizer (GWO) that was proposed recently is an effective nature-inspired method and has become an effective way to solve PV parameter identification. However, determining PV parameters is typically regarded as a multimodal optimization, which is a challenging optimization problem; thus, the original GWO still has the problem of insufficient accuracy and reliability when identifying PV parameters. In this study, an enhanced grey wolf optimizer with fusion strategies (EGWOFS) is proposed to overcome these shortcomings. First, a modified multiple learning backtracking search algorithm (MMLBSA) is designed to ameliorate the global exploration potential of the original GWO. Second, a dynamic spiral updating position strategy (DSUPS) is constructed to promote the performance of local exploitation. Finally, the proposed EGWOFS is verified by two groups of test data, which include three types of PV test models and experimental data extracted from the manufacturer’s data sheet. Experiments show that the overall performance of the proposed EGWOFS achieves competitive or better results in terms of accuracy and reliability for most test models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrated Computer-Aided Engineering
Integrated Computer-Aided Engineering 工程技术-工程:综合
CiteScore
9.90
自引率
21.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal. The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信