{"title":"多晶硅材料晶界周围原子力显微镜光热表征","authors":"K. Hara, Takuji Takahashi","doi":"10.1109/PVSC.2010.5614390","DOIUrl":null,"url":null,"abstract":"Nonradiative recombination of photocarriers around grain boundaries is important property in multicrystalline silicon material, and has been investigated through local photothermal (PT) measurements by atomic force microscopy. We found that the PT signal was apparently enhanced near the grain boundary, which is probably due to fast nonradiative recombination at the boundary. In addition, relationship between the dependence of PT signal on incident photon energy and the minority carrier diffusion length is discussed.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"12 1","pages":"001387-001389"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermal characterrization by atomic force microscopy around grain boundary in multicrystalline silicon material\",\"authors\":\"K. Hara, Takuji Takahashi\",\"doi\":\"10.1109/PVSC.2010.5614390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonradiative recombination of photocarriers around grain boundaries is important property in multicrystalline silicon material, and has been investigated through local photothermal (PT) measurements by atomic force microscopy. We found that the PT signal was apparently enhanced near the grain boundary, which is probably due to fast nonradiative recombination at the boundary. In addition, relationship between the dependence of PT signal on incident photon energy and the minority carrier diffusion length is discussed.\",\"PeriodicalId\":6424,\"journal\":{\"name\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"volume\":\"12 1\",\"pages\":\"001387-001389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 35th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2010.5614390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5614390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photothermal characterrization by atomic force microscopy around grain boundary in multicrystalline silicon material
Nonradiative recombination of photocarriers around grain boundaries is important property in multicrystalline silicon material, and has been investigated through local photothermal (PT) measurements by atomic force microscopy. We found that the PT signal was apparently enhanced near the grain boundary, which is probably due to fast nonradiative recombination at the boundary. In addition, relationship between the dependence of PT signal on incident photon energy and the minority carrier diffusion length is discussed.