最近邻风险估计中的偏差

R. Weißbach, H. Dette
{"title":"最近邻风险估计中的偏差","authors":"R. Weißbach, H. Dette","doi":"10.17877/DE290R-14464","DOIUrl":null,"url":null,"abstract":"In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte Carlo simulation within the three-parameter exponentiated Weibull distribution indicates that a counter-factual normal distribution, as an input to the selector, does provide a good rule of thumb. If bias is the main concern, minimizing the uniform loss yields the best results, but at the cost of very high variability. Cross-validation has a similar bias to the rule of thumb, but also with high variability.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias in nearest-neighbor hazard estimation\",\"authors\":\"R. Weißbach, H. Dette\",\"doi\":\"10.17877/DE290R-14464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte Carlo simulation within the three-parameter exponentiated Weibull distribution indicates that a counter-factual normal distribution, as an input to the selector, does provide a good rule of thumb. If bias is the main concern, minimizing the uniform loss yields the best results, but at the cost of very high variability. Cross-validation has a similar bias to the rule of thumb, but also with high variability.\",\"PeriodicalId\":10841,\"journal\":{\"name\":\"CTIT technical reports series\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CTIT technical reports series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17877/DE290R-14464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-14464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在非参数曲线估计中,平滑参数对曲线的估计性能至关重要。为了估计风险率,我们比较了最小化二次元、Kullback-Leibler和均匀损失的最近邻选择器。这些度量产生了经验法则、交叉验证和插件选择器。在三参数指数威布尔分布内的蒙特卡罗模拟表明,反事实正态分布作为选择器的输入,确实提供了一个很好的经验法则。如果偏差是主要考虑的问题,那么最小化均匀损失会产生最好的结果,但代价是非常高的可变性。交叉验证与经验法则有类似的偏差,但也有很高的可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bias in nearest-neighbor hazard estimation
In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a cross-validation, and a plug-in selector. A Monte Carlo simulation within the three-parameter exponentiated Weibull distribution indicates that a counter-factual normal distribution, as an input to the selector, does provide a good rule of thumb. If bias is the main concern, minimizing the uniform loss yields the best results, but at the cost of very high variability. Cross-validation has a similar bias to the rule of thumb, but also with high variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信