在线BP学习的一种新的收敛性

Rui Zhang, Le Yang, Wei Wang
{"title":"在线BP学习的一种新的收敛性","authors":"Rui Zhang, Le Yang, Wei Wang","doi":"10.1109/ICIST.2011.5765243","DOIUrl":null,"url":null,"abstract":"The feedforward neural networks trained with the online backpropagation (BP) learning algorithm have been widely studied in various areas of scientific research and engineering applications. In this paper we further study the convergence property of the online BP learning algorithm. Unlike the existing convergence analysis mainly focusing on the convergence of the gradient sequence of the error functions, we prove a convergence theorem for the sequence of the error functions itself.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"94 1","pages":"231-237"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new convergence property of online BP learning\",\"authors\":\"Rui Zhang, Le Yang, Wei Wang\",\"doi\":\"10.1109/ICIST.2011.5765243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feedforward neural networks trained with the online backpropagation (BP) learning algorithm have been widely studied in various areas of scientific research and engineering applications. In this paper we further study the convergence property of the online BP learning algorithm. Unlike the existing convergence analysis mainly focusing on the convergence of the gradient sequence of the error functions, we prove a convergence theorem for the sequence of the error functions itself.\",\"PeriodicalId\":6408,\"journal\":{\"name\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"volume\":\"94 1\",\"pages\":\"231-237\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Environmental Science and Information Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2011.5765243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用在线反向传播(BP)学习算法训练的前馈神经网络在科学研究和工程应用的各个领域得到了广泛的研究。本文进一步研究了在线BP学习算法的收敛性。与现有的收敛性分析主要集中在误差函数梯度序列的收敛性不同,我们证明了误差函数本身序列的收敛性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new convergence property of online BP learning
The feedforward neural networks trained with the online backpropagation (BP) learning algorithm have been widely studied in various areas of scientific research and engineering applications. In this paper we further study the convergence property of the online BP learning algorithm. Unlike the existing convergence analysis mainly focusing on the convergence of the gradient sequence of the error functions, we prove a convergence theorem for the sequence of the error functions itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信