{"title":"临界相对论性物质的磁斯科特校正","authors":"Gonzalo A. Bley, S. Fournais","doi":"10.1063/5.0007903","DOIUrl":null,"url":null,"abstract":"We provide a proof of the first correction to the leading asymptotics of the minimal energy of pseudo-relativistic molecules in the presence of magnetic fields, the so-called \"relativistic Scott correction\", when $\\max{Z_k\\alpha} \\leq 2/\\pi$, where $Z_k$ is the charge of the $k$-th nucleus and $\\alpha$ is the fine structure constant. Our theorem extends a previous result by Erdős, Fournais, and Solovej to the critical constant $2/\\pi$ in the relativistic Hardy inequality $|p| - \\frac{2}{\\pi |x|} \\geq 0$.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The magnetic Scott correction for relativistic matter at criticality\",\"authors\":\"Gonzalo A. Bley, S. Fournais\",\"doi\":\"10.1063/5.0007903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a proof of the first correction to the leading asymptotics of the minimal energy of pseudo-relativistic molecules in the presence of magnetic fields, the so-called \\\"relativistic Scott correction\\\", when $\\\\max{Z_k\\\\alpha} \\\\leq 2/\\\\pi$, where $Z_k$ is the charge of the $k$-th nucleus and $\\\\alpha$ is the fine structure constant. Our theorem extends a previous result by Erdős, Fournais, and Solovej to the critical constant $2/\\\\pi$ in the relativistic Hardy inequality $|p| - \\\\frac{2}{\\\\pi |x|} \\\\geq 0$.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0007903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0007903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The magnetic Scott correction for relativistic matter at criticality
We provide a proof of the first correction to the leading asymptotics of the minimal energy of pseudo-relativistic molecules in the presence of magnetic fields, the so-called "relativistic Scott correction", when $\max{Z_k\alpha} \leq 2/\pi$, where $Z_k$ is the charge of the $k$-th nucleus and $\alpha$ is the fine structure constant. Our theorem extends a previous result by Erdős, Fournais, and Solovej to the critical constant $2/\pi$ in the relativistic Hardy inequality $|p| - \frac{2}{\pi |x|} \geq 0$.