一种新的生命周期模型、随机顺序与肾脏感染回归模型

Q3 Multidisciplinary
Araf Khanjari Idenak, M. Zadkarami, S. M. R. Alavi
{"title":"一种新的生命周期模型、随机顺序与肾脏感染回归模型","authors":"Araf Khanjari Idenak, M. Zadkarami, S. M. R. Alavi","doi":"10.22059/JSCIENCES.2021.321231.1007639","DOIUrl":null,"url":null,"abstract":"We introduce a method to generate a new class of lifetime models based on the bounded distributions such that the defined models are exclusively a special case of the new class. A new subfamily, Generalized Alpha Power (GAP) is discussed and some stochastic orders in this subfamily are investigated to identify the proposed method effect. The performance of the maximum likelihood estimators based on the simulation is studied and in the end, the importance and flexibility of the new family for the models are illustrated by a real data set. Our results indicate that using the proposed method substantially improves the fitness of any G-family model and can be extended to any real data set. Finally, the GAPTW regression model is applied to the kidney infection data.","PeriodicalId":17009,"journal":{"name":"journal of sciences islamic republic of iran","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Lifetime Model, Stochastic Orders and Kidney Infection Regression model\",\"authors\":\"Araf Khanjari Idenak, M. Zadkarami, S. M. R. Alavi\",\"doi\":\"10.22059/JSCIENCES.2021.321231.1007639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a method to generate a new class of lifetime models based on the bounded distributions such that the defined models are exclusively a special case of the new class. A new subfamily, Generalized Alpha Power (GAP) is discussed and some stochastic orders in this subfamily are investigated to identify the proposed method effect. The performance of the maximum likelihood estimators based on the simulation is studied and in the end, the importance and flexibility of the new family for the models are illustrated by a real data set. Our results indicate that using the proposed method substantially improves the fitness of any G-family model and can be extended to any real data set. Finally, the GAPTW regression model is applied to the kidney infection data.\",\"PeriodicalId\":17009,\"journal\":{\"name\":\"journal of sciences islamic republic of iran\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"journal of sciences islamic republic of iran\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22059/JSCIENCES.2021.321231.1007639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"journal of sciences islamic republic of iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JSCIENCES.2021.321231.1007639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于有界分布生成新一类生命周期模型的方法,使得所定义的模型完全是新一类生命周期模型的特例。讨论了一个新的子族——广义阿尔法幂(GAP),并对该子族中的一些随机阶进行了研究,以验证该方法的效果。研究了基于仿真的极大似然估计器的性能,最后通过一个实际数据集说明了新类模型的重要性和灵活性。我们的结果表明,使用该方法大大提高了任何g族模型的适应度,并且可以扩展到任何实际数据集。最后,将GAPTW回归模型应用于肾脏感染数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Lifetime Model, Stochastic Orders and Kidney Infection Regression model
We introduce a method to generate a new class of lifetime models based on the bounded distributions such that the defined models are exclusively a special case of the new class. A new subfamily, Generalized Alpha Power (GAP) is discussed and some stochastic orders in this subfamily are investigated to identify the proposed method effect. The performance of the maximum likelihood estimators based on the simulation is studied and in the end, the importance and flexibility of the new family for the models are illustrated by a real data set. Our results indicate that using the proposed method substantially improves the fitness of any G-family model and can be extended to any real data set. Finally, the GAPTW regression model is applied to the kidney infection data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
journal of sciences islamic republic of iran
journal of sciences islamic republic of iran Multidisciplinary-Multidisciplinary
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信