Guy Mencarelli, Jean-Philippe Bourbon, K. Forbord, David Gibson
{"title":"Ærfugl项目的电加热示踪管线-从产品认证到海上战役的历程","authors":"Guy Mencarelli, Jean-Philippe Bourbon, K. Forbord, David Gibson","doi":"10.4043/31078-ms","DOIUrl":null,"url":null,"abstract":"\n The Ærfugl field is close to the existing Skarv development located in Norwegian Sea, making it a tie-back opportunity. The hydrate management and operational savings were major drivers for the subsea system design requiring the use of an electrically heated trace flowline (EHTF).\n The scope of this paper is to present how the EHTF technology has been further developed, qualified and industrialized during the execution of the Ærfugl project. It will also illustrate how a unique collaborative model between an Operator, an SPS Contractor and an EPCI Contractor contributed to the delivery of the first heated Pipe in Pipe system on a sizable project.\n Starting from a conceptual technology selection to the project delivery, numerous qualifications were performed to validate the EHTFsystem design and ease its industrialization. The development of a new technology starts from the component design through system qualification up to the installation phase. It is of prime importance that all the different phases of the system life cycle are equally considered, as being interdependent. By using this holistic design approach right from the start of the qualification phase, the final product eventually meets all the requirements, from the component specification to the system performance.\n The collaborative model in place on the Ærfugl project allowed the efficient integration of the Operator at each different step of the design, qualification and industrialization process resulting in delivery schedule savings when compared to a conventional project delivery approach. Several important development activities took place during the Ærfugl project and the holistic design approach backed by robust system engineering processes enabled a smooth and efficient workflow supporting the onshore fabrication and offshore installation readiness activities.\n Several fabrication challenges were overcome during the project to safely deliver the EHTF solution with a continuous focus on quality and this paper will also cover the most relevant ones.\n Following the Ærfugl project execution, the EHTF technology, supported by a unique collaborative model with the operator, is now fully qualified, and deployed offshore based on robust and reliable manufacturing and installation methods.","PeriodicalId":10936,"journal":{"name":"Day 2 Tue, August 17, 2021","volume":"202 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrically Heated Trace Flowline on Ærfugl Project - A journey from Product Qualification to Offshore Campaign\",\"authors\":\"Guy Mencarelli, Jean-Philippe Bourbon, K. Forbord, David Gibson\",\"doi\":\"10.4043/31078-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Ærfugl field is close to the existing Skarv development located in Norwegian Sea, making it a tie-back opportunity. The hydrate management and operational savings were major drivers for the subsea system design requiring the use of an electrically heated trace flowline (EHTF).\\n The scope of this paper is to present how the EHTF technology has been further developed, qualified and industrialized during the execution of the Ærfugl project. It will also illustrate how a unique collaborative model between an Operator, an SPS Contractor and an EPCI Contractor contributed to the delivery of the first heated Pipe in Pipe system on a sizable project.\\n Starting from a conceptual technology selection to the project delivery, numerous qualifications were performed to validate the EHTFsystem design and ease its industrialization. The development of a new technology starts from the component design through system qualification up to the installation phase. It is of prime importance that all the different phases of the system life cycle are equally considered, as being interdependent. By using this holistic design approach right from the start of the qualification phase, the final product eventually meets all the requirements, from the component specification to the system performance.\\n The collaborative model in place on the Ærfugl project allowed the efficient integration of the Operator at each different step of the design, qualification and industrialization process resulting in delivery schedule savings when compared to a conventional project delivery approach. Several important development activities took place during the Ærfugl project and the holistic design approach backed by robust system engineering processes enabled a smooth and efficient workflow supporting the onshore fabrication and offshore installation readiness activities.\\n Several fabrication challenges were overcome during the project to safely deliver the EHTF solution with a continuous focus on quality and this paper will also cover the most relevant ones.\\n Following the Ærfugl project execution, the EHTF technology, supported by a unique collaborative model with the operator, is now fully qualified, and deployed offshore based on robust and reliable manufacturing and installation methods.\",\"PeriodicalId\":10936,\"journal\":{\"name\":\"Day 2 Tue, August 17, 2021\",\"volume\":\"202 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31078-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31078-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrically Heated Trace Flowline on Ærfugl Project - A journey from Product Qualification to Offshore Campaign
The Ærfugl field is close to the existing Skarv development located in Norwegian Sea, making it a tie-back opportunity. The hydrate management and operational savings were major drivers for the subsea system design requiring the use of an electrically heated trace flowline (EHTF).
The scope of this paper is to present how the EHTF technology has been further developed, qualified and industrialized during the execution of the Ærfugl project. It will also illustrate how a unique collaborative model between an Operator, an SPS Contractor and an EPCI Contractor contributed to the delivery of the first heated Pipe in Pipe system on a sizable project.
Starting from a conceptual technology selection to the project delivery, numerous qualifications were performed to validate the EHTFsystem design and ease its industrialization. The development of a new technology starts from the component design through system qualification up to the installation phase. It is of prime importance that all the different phases of the system life cycle are equally considered, as being interdependent. By using this holistic design approach right from the start of the qualification phase, the final product eventually meets all the requirements, from the component specification to the system performance.
The collaborative model in place on the Ærfugl project allowed the efficient integration of the Operator at each different step of the design, qualification and industrialization process resulting in delivery schedule savings when compared to a conventional project delivery approach. Several important development activities took place during the Ærfugl project and the holistic design approach backed by robust system engineering processes enabled a smooth and efficient workflow supporting the onshore fabrication and offshore installation readiness activities.
Several fabrication challenges were overcome during the project to safely deliver the EHTF solution with a continuous focus on quality and this paper will also cover the most relevant ones.
Following the Ærfugl project execution, the EHTF technology, supported by a unique collaborative model with the operator, is now fully qualified, and deployed offshore based on robust and reliable manufacturing and installation methods.