{"title":"以制造飞机空调系统元件为例,介绍熔焊的控制与监控","authors":"V. Merkulov, S. Lazarev","doi":"10.30987/1999-8775-2021-9-23-28","DOIUrl":null,"url":null,"abstract":"The purpose of the study is estimation of the efficiency of the control systems use for improving the organization of various welding processes and perfectibility of the technological discipline of their implementation. \nThe article opens the concept of \"welding production management\" as a comprehensive quality and performance management system of the welding process. \nThe solution to the problem of reducing the time for optimizing structures was the introduction of a new computer system. It successfully collects data for calculating and analyzing the space of design solutions, for more accurate forecasting of product characteristics based on numerical modeling. The additional module performs the analysis and optimization of the welding process in an interdisciplinary optimization environment. The algorithm sets up strategies for finding the best solution based on the required characteristics and properties of the product. Hybrid and adaptive search methods are used for this purpose. \nThe new process eliminates the need to use several segmental systems, while all optimization is now performed in a unified environment. \nThe exclusion of the human factor in the selection and installation of the welding mode increases the qualitative and quantitative indicators of the entire technological process, since the preparatory and final time in welding can reach 20% of the entire operation time, and an error in one parameter can lead to a final defect of the whole workpiece.","PeriodicalId":9358,"journal":{"name":"Bulletin of Bryansk state technical university","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONTROL AND MONITORING OF FUSION WELDING BY WAY OF EXAMPLE OF MANUFACTURING AIRCRAFT AIR CONDITIONING SYSTEMS ELEMENTS\",\"authors\":\"V. Merkulov, S. Lazarev\",\"doi\":\"10.30987/1999-8775-2021-9-23-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the study is estimation of the efficiency of the control systems use for improving the organization of various welding processes and perfectibility of the technological discipline of their implementation. \\nThe article opens the concept of \\\"welding production management\\\" as a comprehensive quality and performance management system of the welding process. \\nThe solution to the problem of reducing the time for optimizing structures was the introduction of a new computer system. It successfully collects data for calculating and analyzing the space of design solutions, for more accurate forecasting of product characteristics based on numerical modeling. The additional module performs the analysis and optimization of the welding process in an interdisciplinary optimization environment. The algorithm sets up strategies for finding the best solution based on the required characteristics and properties of the product. Hybrid and adaptive search methods are used for this purpose. \\nThe new process eliminates the need to use several segmental systems, while all optimization is now performed in a unified environment. \\nThe exclusion of the human factor in the selection and installation of the welding mode increases the qualitative and quantitative indicators of the entire technological process, since the preparatory and final time in welding can reach 20% of the entire operation time, and an error in one parameter can lead to a final defect of the whole workpiece.\",\"PeriodicalId\":9358,\"journal\":{\"name\":\"Bulletin of Bryansk state technical university\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Bryansk state technical university\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/1999-8775-2021-9-23-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Bryansk state technical university","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/1999-8775-2021-9-23-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CONTROL AND MONITORING OF FUSION WELDING BY WAY OF EXAMPLE OF MANUFACTURING AIRCRAFT AIR CONDITIONING SYSTEMS ELEMENTS
The purpose of the study is estimation of the efficiency of the control systems use for improving the organization of various welding processes and perfectibility of the technological discipline of their implementation.
The article opens the concept of "welding production management" as a comprehensive quality and performance management system of the welding process.
The solution to the problem of reducing the time for optimizing structures was the introduction of a new computer system. It successfully collects data for calculating and analyzing the space of design solutions, for more accurate forecasting of product characteristics based on numerical modeling. The additional module performs the analysis and optimization of the welding process in an interdisciplinary optimization environment. The algorithm sets up strategies for finding the best solution based on the required characteristics and properties of the product. Hybrid and adaptive search methods are used for this purpose.
The new process eliminates the need to use several segmental systems, while all optimization is now performed in a unified environment.
The exclusion of the human factor in the selection and installation of the welding mode increases the qualitative and quantitative indicators of the entire technological process, since the preparatory and final time in welding can reach 20% of the entire operation time, and an error in one parameter can lead to a final defect of the whole workpiece.