LaBr3:Ce中与电离密度相关的闪烁脉冲形状和发光猝灭机制

J. Cang, Xinchao Fang, Z. Zeng, M. Zeng, Yinong Liu, Zhigang Sun, Ziyun Chen
{"title":"LaBr3:Ce中与电离密度相关的闪烁脉冲形状和发光猝灭机制","authors":"J. Cang, Xinchao Fang, Z. Zeng, M. Zeng, Yinong Liu, Zhigang Sun, Ziyun Chen","doi":"10.1103/PhysRevApplied.14.064075","DOIUrl":null,"url":null,"abstract":"Pulse shape discrimination (PSD) is usually achieved using the different fast and slow decay components of inorganic scintillators, such as BaF2, CsI:Tl, etc. However, LaBr3:Ce is considered to not possess different components at room temperature, but has been proved to have the capability of discriminating gamma and alpha events using fast digitizers. The physical mechanism of such PSD capability of single-decay component LaBr3:Ce was still unclear. Ionization density-dependent transport and rate equations are used to quantitatively model the competing processes in a particle track. With one parameter set, the model reproduces the non-proportionality response of electrons or alpha particles, and predicts the measured {\\alpha}/{\\gamma} pulse shape difference. In particular, the nonlinear quenching of excited dopant ions, Ce3+, is confirmed herein for the first time to mainly contribute observable ionization {\\alpha}/{\\gamma} pulse shape differences. Further study of the luminescence quenching can also help to better understand the fundamental physics of nonlinear quenching and thus improve the crystal engineering. Moreover, based on the mechanism of dopant quenching, the ionization density-dependent pulse shape differences in other fast single-decay-component inorganic scintillators, such as LYSO and CeBr3, are also predicted and verified with experiments.","PeriodicalId":8827,"journal":{"name":"arXiv: Instrumentation and Detectors","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ionization-density-dependent Scintillation Pulse Shape and Mechanism of Luminescence Quenching in LaBr\\n3\\n:Ce\",\"authors\":\"J. Cang, Xinchao Fang, Z. Zeng, M. Zeng, Yinong Liu, Zhigang Sun, Ziyun Chen\",\"doi\":\"10.1103/PhysRevApplied.14.064075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulse shape discrimination (PSD) is usually achieved using the different fast and slow decay components of inorganic scintillators, such as BaF2, CsI:Tl, etc. However, LaBr3:Ce is considered to not possess different components at room temperature, but has been proved to have the capability of discriminating gamma and alpha events using fast digitizers. The physical mechanism of such PSD capability of single-decay component LaBr3:Ce was still unclear. Ionization density-dependent transport and rate equations are used to quantitatively model the competing processes in a particle track. With one parameter set, the model reproduces the non-proportionality response of electrons or alpha particles, and predicts the measured {\\\\alpha}/{\\\\gamma} pulse shape difference. In particular, the nonlinear quenching of excited dopant ions, Ce3+, is confirmed herein for the first time to mainly contribute observable ionization {\\\\alpha}/{\\\\gamma} pulse shape differences. Further study of the luminescence quenching can also help to better understand the fundamental physics of nonlinear quenching and thus improve the crystal engineering. Moreover, based on the mechanism of dopant quenching, the ionization density-dependent pulse shape differences in other fast single-decay-component inorganic scintillators, such as LYSO and CeBr3, are also predicted and verified with experiments.\",\"PeriodicalId\":8827,\"journal\":{\"name\":\"arXiv: Instrumentation and Detectors\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Instrumentation and Detectors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevApplied.14.064075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Instrumentation and Detectors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevApplied.14.064075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

脉冲形状判别(PSD)通常是利用无机闪烁体(如BaF2、CsI:Tl等)不同的快、慢衰减成分来实现的。然而,LaBr3:Ce被认为在室温下不具有不同的成分,但已被证明具有使用快速数字化器区分γ和α事件的能力。单衰变组分LaBr3:Ce产生这种PSD能力的物理机制尚不清楚。利用依赖于电离密度的输运方程和速率方程对粒子轨迹中的竞争过程进行了定量建模。在一个参数集下,该模型再现了电子或α粒子的非比例响应,并预测了测量到的{\alpha} / {\gamma}脉冲形状差。特别地,本文首次证实了受激掺杂离子Ce3+的非线性猝灭,主要导致了可观测到的电离{\alpha} / {\gamma}脉冲形状差异。进一步研究发光猝灭也有助于更好地理解非线性猝灭的基本物理,从而改进晶体工程。此外,基于掺杂剂猝灭机理,预测了LYSO和CeBr3等其它快速单衰组分无机闪烁体中随电离密度变化的脉冲形状差异,并进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ionization-density-dependent Scintillation Pulse Shape and Mechanism of Luminescence Quenching in LaBr 3 :Ce
Pulse shape discrimination (PSD) is usually achieved using the different fast and slow decay components of inorganic scintillators, such as BaF2, CsI:Tl, etc. However, LaBr3:Ce is considered to not possess different components at room temperature, but has been proved to have the capability of discriminating gamma and alpha events using fast digitizers. The physical mechanism of such PSD capability of single-decay component LaBr3:Ce was still unclear. Ionization density-dependent transport and rate equations are used to quantitatively model the competing processes in a particle track. With one parameter set, the model reproduces the non-proportionality response of electrons or alpha particles, and predicts the measured {\alpha}/{\gamma} pulse shape difference. In particular, the nonlinear quenching of excited dopant ions, Ce3+, is confirmed herein for the first time to mainly contribute observable ionization {\alpha}/{\gamma} pulse shape differences. Further study of the luminescence quenching can also help to better understand the fundamental physics of nonlinear quenching and thus improve the crystal engineering. Moreover, based on the mechanism of dopant quenching, the ionization density-dependent pulse shape differences in other fast single-decay-component inorganic scintillators, such as LYSO and CeBr3, are also predicted and verified with experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信