八面体氧化骨架的电阻开关效应

Y. Gagou, B. Allouche, P. Saint-Grégoire, M. El Marssi
{"title":"八面体氧化骨架的电阻开关效应","authors":"Y. Gagou, B. Allouche, P. Saint-Grégoire, M. El Marssi","doi":"10.23647/ca.md20200109","DOIUrl":null,"url":null,"abstract":"Resistive Random-Access Memories (ReRAM) are an alternative way to create new memory devices. This is physically possible due to the existence in the material, of two resistive states clearly discreditable, as a function of voltage value and polarity first parameter under control to pass from one state to another one. However, the mechanism of the resistance switching is not simple and is under debate. We present in the present chapter all the factors entering in the switching process in tetragonal tungsten bronze (TTB) type structure oxide thin films deposited by PLD technique onto MgO or STO substrates. Results show that GdK2Nb5O15 (GKN) thin films deposited on MgO and STO substrates are resistively switchable. It was found that the nature of the substrate strongly affects the resistance ratio: GKN on SRO/LSCO/MgO showed a large hysteresis compared to GKN on SRO/STO. Substrate effect and oxygen vacancy on resistance switching in GKN thin film were studied in the same experimental conditions. The study of resistance switching in the GKN/MgO and GKN/STO thin films has confirmed that for low voltages, below the threshold value of 1.3 V, the electric transport is dominated by the formation of a Schottky type barrier, which allows a minimum leakage current. Resistance switching in GKN is attributed to the oxygen vacancies migration which can be controlled by the substrate or the frequency sweep.","PeriodicalId":19388,"journal":{"name":"OAJ Materials and Devices","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistance Switching Effect in Octahedral framework oxide\",\"authors\":\"Y. Gagou, B. Allouche, P. Saint-Grégoire, M. El Marssi\",\"doi\":\"10.23647/ca.md20200109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistive Random-Access Memories (ReRAM) are an alternative way to create new memory devices. This is physically possible due to the existence in the material, of two resistive states clearly discreditable, as a function of voltage value and polarity first parameter under control to pass from one state to another one. However, the mechanism of the resistance switching is not simple and is under debate. We present in the present chapter all the factors entering in the switching process in tetragonal tungsten bronze (TTB) type structure oxide thin films deposited by PLD technique onto MgO or STO substrates. Results show that GdK2Nb5O15 (GKN) thin films deposited on MgO and STO substrates are resistively switchable. It was found that the nature of the substrate strongly affects the resistance ratio: GKN on SRO/LSCO/MgO showed a large hysteresis compared to GKN on SRO/STO. Substrate effect and oxygen vacancy on resistance switching in GKN thin film were studied in the same experimental conditions. The study of resistance switching in the GKN/MgO and GKN/STO thin films has confirmed that for low voltages, below the threshold value of 1.3 V, the electric transport is dominated by the formation of a Schottky type barrier, which allows a minimum leakage current. Resistance switching in GKN is attributed to the oxygen vacancies migration which can be controlled by the substrate or the frequency sweep.\",\"PeriodicalId\":19388,\"journal\":{\"name\":\"OAJ Materials and Devices\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OAJ Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23647/ca.md20200109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OAJ Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23647/ca.md20200109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电阻随机存取存储器(ReRAM)是创建新存储设备的另一种方法。这在物理上是可能的,因为材料中存在两种明显不可信的电阻状态,作为电压值和极性第一个参数的函数,在控制下从一种状态传递到另一种状态。然而,电阻开关的机制并不简单,一直存在争议。在本章中,我们介绍了通过PLD技术沉积在MgO或STO衬底上的四方钨青铜(TTB)型结构氧化物薄膜的开关过程中的所有因素。结果表明,沉积在MgO和STO衬底上的GdK2Nb5O15 (GKN)薄膜具有电阻性可切换性。研究发现,衬底的性质对电阻比的影响很大:GKN在SRO/LSCO/MgO上比GKN在SRO/STO上表现出更大的滞后。在相同的实验条件下,研究了衬底效应和氧空位对GKN薄膜电阻开关的影响。GKN/MgO和GKN/STO薄膜的电阻开关研究证实,在低电压下,低于1.3 V的阈值,电输运主要由肖特基型势垒的形成所主导,该势垒允许最小的泄漏电流。GKN中的电阻开关归因于氧空位迁移,这可以通过衬底或频率扫描来控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resistance Switching Effect in Octahedral framework oxide
Resistive Random-Access Memories (ReRAM) are an alternative way to create new memory devices. This is physically possible due to the existence in the material, of two resistive states clearly discreditable, as a function of voltage value and polarity first parameter under control to pass from one state to another one. However, the mechanism of the resistance switching is not simple and is under debate. We present in the present chapter all the factors entering in the switching process in tetragonal tungsten bronze (TTB) type structure oxide thin films deposited by PLD technique onto MgO or STO substrates. Results show that GdK2Nb5O15 (GKN) thin films deposited on MgO and STO substrates are resistively switchable. It was found that the nature of the substrate strongly affects the resistance ratio: GKN on SRO/LSCO/MgO showed a large hysteresis compared to GKN on SRO/STO. Substrate effect and oxygen vacancy on resistance switching in GKN thin film were studied in the same experimental conditions. The study of resistance switching in the GKN/MgO and GKN/STO thin films has confirmed that for low voltages, below the threshold value of 1.3 V, the electric transport is dominated by the formation of a Schottky type barrier, which allows a minimum leakage current. Resistance switching in GKN is attributed to the oxygen vacancies migration which can be controlled by the substrate or the frequency sweep.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信