基于木材JAS视觉分级的结度评价模型参数优化

Kai Moriguchi, Naoaki Shibata, M. Imai, Masato Yamanouchi, Takahisa Yoshida
{"title":"基于木材JAS视觉分级的结度评价模型参数优化","authors":"Kai Moriguchi, Naoaki Shibata, M. Imai, Masato Yamanouchi, Takahisa Yoshida","doi":"10.2488/JWRS.62.133","DOIUrl":null,"url":null,"abstract":"We defined a knot assessment model based on the visual grading of Japanese Agricultural Standard (JAS) of lumber and attempted to optimize parameters of the model using simulated annealing. Parameters of the knot assessment model were optimized by maximizing coefficients of determination of regression models, using data of bending tests and surface images of 40 test pieces, 120 mm square cross section kiln-dried lumber with pith of Japanese larch ((cid:9488)(cid:9509)(cid:9526)(cid:9517)(cid:9532)(cid:9444)(cid:9519)(cid:9509)(cid:9513)(cid:9521)(cid:9524)(cid:9514)(cid:9513)(cid:9526)(cid:9517) Lamb.). Values of the coefficient of determination of regression models using knot index values of optimized knot assessment models were much larger than those obtained by ordinary visual grading. However, knot index values of almost all test pieces were decided by a particular type of knot diameter ratio, suggesting overfitting. We then simplified the knot assessment model, eliminating the distinction between center or edge areas and types of single knot. Values of the coefficient of determination of regression models were then decreased compared to those of the above optimized knot assessment models. However, they were still larger than those based on ordinary visual grading, and there were significant differences between correlation coefficients of each single regression model.","PeriodicalId":17248,"journal":{"name":"Journal of the Japan Wood Research Society","volume":"12 1","pages":"133-145"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing the Parameters of a Knot Assessment Model Based on the Visual Grading of JAS of Lumber\",\"authors\":\"Kai Moriguchi, Naoaki Shibata, M. Imai, Masato Yamanouchi, Takahisa Yoshida\",\"doi\":\"10.2488/JWRS.62.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We defined a knot assessment model based on the visual grading of Japanese Agricultural Standard (JAS) of lumber and attempted to optimize parameters of the model using simulated annealing. Parameters of the knot assessment model were optimized by maximizing coefficients of determination of regression models, using data of bending tests and surface images of 40 test pieces, 120 mm square cross section kiln-dried lumber with pith of Japanese larch ((cid:9488)(cid:9509)(cid:9526)(cid:9517)(cid:9532)(cid:9444)(cid:9519)(cid:9509)(cid:9513)(cid:9521)(cid:9524)(cid:9514)(cid:9513)(cid:9526)(cid:9517) Lamb.). Values of the coefficient of determination of regression models using knot index values of optimized knot assessment models were much larger than those obtained by ordinary visual grading. However, knot index values of almost all test pieces were decided by a particular type of knot diameter ratio, suggesting overfitting. We then simplified the knot assessment model, eliminating the distinction between center or edge areas and types of single knot. Values of the coefficient of determination of regression models were then decreased compared to those of the above optimized knot assessment models. However, they were still larger than those based on ordinary visual grading, and there were significant differences between correlation coefficients of each single regression model.\",\"PeriodicalId\":17248,\"journal\":{\"name\":\"Journal of the Japan Wood Research Society\",\"volume\":\"12 1\",\"pages\":\"133-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Wood Research Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2488/JWRS.62.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Wood Research Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2488/JWRS.62.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于日本农业标准(JAS)对木材的视觉分级,定义了一个结度评估模型,并尝试采用模拟退火方法对模型参数进行优化。利用日本落叶松((cid:9488)(cid:9509)(cid:9526)(cid:9517)(cid:9532)(cid:9444)(cid:9519)(cid: 9521)(cid: 9521)(cid: 9514)(cid:9513)(cid:9526)(cid:9517)羔羊)等40个试件的弯曲试验数据和表面图像,通过最大化回归模型的确定系数,对结评估模型的参数进行了优化。利用优化后的结指数评价模型得到的回归模型的决定系数远大于普通目测分级法得到的结果。然而,几乎所有试件的结指数值都是由特定类型的结直径比决定的,这表明过拟合。然后,我们简化了结评估模型,消除了中心或边缘区域和单个结类型之间的区别。然后,与上述优化的结评估模型相比,回归模型的决定系数值减小。但仍大于普通视觉分级,且各单一回归模型的相关系数存在显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the Parameters of a Knot Assessment Model Based on the Visual Grading of JAS of Lumber
We defined a knot assessment model based on the visual grading of Japanese Agricultural Standard (JAS) of lumber and attempted to optimize parameters of the model using simulated annealing. Parameters of the knot assessment model were optimized by maximizing coefficients of determination of regression models, using data of bending tests and surface images of 40 test pieces, 120 mm square cross section kiln-dried lumber with pith of Japanese larch ((cid:9488)(cid:9509)(cid:9526)(cid:9517)(cid:9532)(cid:9444)(cid:9519)(cid:9509)(cid:9513)(cid:9521)(cid:9524)(cid:9514)(cid:9513)(cid:9526)(cid:9517) Lamb.). Values of the coefficient of determination of regression models using knot index values of optimized knot assessment models were much larger than those obtained by ordinary visual grading. However, knot index values of almost all test pieces were decided by a particular type of knot diameter ratio, suggesting overfitting. We then simplified the knot assessment model, eliminating the distinction between center or edge areas and types of single knot. Values of the coefficient of determination of regression models were then decreased compared to those of the above optimized knot assessment models. However, they were still larger than those based on ordinary visual grading, and there were significant differences between correlation coefficients of each single regression model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信