带分时隔离转换器的EV BMS,用于主动平衡和辅助母线调节

Z. Gong, Bjorn A. C. van de Ven, Y. Lu, Y. Luo, K. Gupta, C. D. da Silva, H. Bergveld, O. Trescases
{"title":"带分时隔离转换器的EV BMS,用于主动平衡和辅助母线调节","authors":"Z. Gong, Bjorn A. C. van de Ven, Y. Lu, Y. Luo, K. Gupta, C. D. da Silva, H. Bergveld, O. Trescases","doi":"10.23919/IPEC.2018.8507737","DOIUrl":null,"url":null,"abstract":"Improved utilisation of the total energy storage in Electric Vehicle (EV) battery systems can be achieved through balancing of the series-connected battery units based on parameters such as the terminal voltage and State-of-Charge (SOC). This paper proposes a BMS power architecture where at any given time, an isolated converter connects either a module or one of its constituent sub-modules to the vehicle auxiliary bus, where a 12V lead-acid battery is present. The converters operate in burst-mode with a period of 10 s to simultaneously balance the sub-modules and regulate the auxiliary bus voltage. The use of module and sub-module input modes to the converters enables the supply of high-power auxiliary loads without an increase in converter input current rating. Simulations of one rule-based and one variable-priority control algorithm, both using SOC as the balancing parameter, are shown over a 6 hour load profile and 5% maximum initial SOC imbalance, for a 4 kWh liquid-cooled battery module prototye. Measurements using the same prototype are shown to match the simulation results. The simulation and experimental results highlight the necessary trade-off, in the system control, between auxiliary bus voltage regulation and balancing rate.","PeriodicalId":6610,"journal":{"name":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","volume":"69 1","pages":"267-274"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"EV BMS with Time-Shared Isolated Converters for Active Balancing and Auxiliary Bus Regulation\",\"authors\":\"Z. Gong, Bjorn A. C. van de Ven, Y. Lu, Y. Luo, K. Gupta, C. D. da Silva, H. Bergveld, O. Trescases\",\"doi\":\"10.23919/IPEC.2018.8507737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improved utilisation of the total energy storage in Electric Vehicle (EV) battery systems can be achieved through balancing of the series-connected battery units based on parameters such as the terminal voltage and State-of-Charge (SOC). This paper proposes a BMS power architecture where at any given time, an isolated converter connects either a module or one of its constituent sub-modules to the vehicle auxiliary bus, where a 12V lead-acid battery is present. The converters operate in burst-mode with a period of 10 s to simultaneously balance the sub-modules and regulate the auxiliary bus voltage. The use of module and sub-module input modes to the converters enables the supply of high-power auxiliary loads without an increase in converter input current rating. Simulations of one rule-based and one variable-priority control algorithm, both using SOC as the balancing parameter, are shown over a 6 hour load profile and 5% maximum initial SOC imbalance, for a 4 kWh liquid-cooled battery module prototye. Measurements using the same prototype are shown to match the simulation results. The simulation and experimental results highlight the necessary trade-off, in the system control, between auxiliary bus voltage regulation and balancing rate.\",\"PeriodicalId\":6610,\"journal\":{\"name\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"volume\":\"69 1\",\"pages\":\"267-274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IPEC.2018.8507737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC.2018.8507737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过基于终端电压和充电状态(SOC)等参数对串联电池单元进行平衡,可以提高电动汽车(EV)电池系统中总储能的利用率。本文提出了一种BMS电源架构,其中在任何给定时间,隔离转换器将模块或其组成子模块之一连接到车辆辅助总线,其中存在12V铅酸电池。转换器工作在突发模式,周期为10s,同时平衡子模块和调节辅助母线电压。转换器采用模块和子模块输入模式,可以在不增加转换器额定输入电流的情况下提供高功率辅助负载。以4 kWh液冷电池模块原型为例,在6小时负载分布和5%最大初始SOC不平衡的情况下,分别采用基于规则和可变优先级的控制算法进行了仿真。使用同一原型的测量结果与仿真结果相匹配。仿真和实验结果表明,在系统控制中,辅助母线电压调节和平衡率之间必须进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EV BMS with Time-Shared Isolated Converters for Active Balancing and Auxiliary Bus Regulation
Improved utilisation of the total energy storage in Electric Vehicle (EV) battery systems can be achieved through balancing of the series-connected battery units based on parameters such as the terminal voltage and State-of-Charge (SOC). This paper proposes a BMS power architecture where at any given time, an isolated converter connects either a module or one of its constituent sub-modules to the vehicle auxiliary bus, where a 12V lead-acid battery is present. The converters operate in burst-mode with a period of 10 s to simultaneously balance the sub-modules and regulate the auxiliary bus voltage. The use of module and sub-module input modes to the converters enables the supply of high-power auxiliary loads without an increase in converter input current rating. Simulations of one rule-based and one variable-priority control algorithm, both using SOC as the balancing parameter, are shown over a 6 hour load profile and 5% maximum initial SOC imbalance, for a 4 kWh liquid-cooled battery module prototye. Measurements using the same prototype are shown to match the simulation results. The simulation and experimental results highlight the necessary trade-off, in the system control, between auxiliary bus voltage regulation and balancing rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信