在凸不等式约束或线性不等式约束下的凸线性分式可分离函数的极小化及其变量的界

S. Stefanov
{"title":"在凸不等式约束或线性不等式约束下的凸线性分式可分离函数的极小化及其变量的界","authors":"S. Stefanov","doi":"10.1155/AMRX/2006/36581","DOIUrl":null,"url":null,"abstract":"We consider the problem of minimizing a convex linear-fractional separable function over a feasible region defined by a convex inequality constraint or linear inequality constraint, and bounds on the variables (box constraints). These problems are interesting from both theoretical and practical points of view because they arise in some mathematical programming problems and in various practical problems. Polynomial algorithms for solving such problems are proposed and their convergence is proved. Some examples and results of numerical experiments are also presented.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"65 1","pages":"36581"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Minimization of a Convex Linear-Fractional Separable Function Subject to a Convex Inequality Constraint or Linear Inequality Constraint and Bounds on the Variables\",\"authors\":\"S. Stefanov\",\"doi\":\"10.1155/AMRX/2006/36581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of minimizing a convex linear-fractional separable function over a feasible region defined by a convex inequality constraint or linear inequality constraint, and bounds on the variables (box constraints). These problems are interesting from both theoretical and practical points of view because they arise in some mathematical programming problems and in various practical problems. Polynomial algorithms for solving such problems are proposed and their convergence is proved. Some examples and results of numerical experiments are also presented.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"65 1\",\"pages\":\"36581\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/AMRX/2006/36581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/AMRX/2006/36581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们考虑了凸线性分数可分函数在由凸不等式约束或线性不等式约束定义的可行域上的最小化问题,以及变量的界(框约束)。这些问题从理论和实践的角度来看都很有趣,因为它们出现在一些数学规划问题和各种实际问题中。提出了求解这类问题的多项式算法,并证明了其收敛性。文中还给出了一些数值实验的实例和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimization of a Convex Linear-Fractional Separable Function Subject to a Convex Inequality Constraint or Linear Inequality Constraint and Bounds on the Variables
We consider the problem of minimizing a convex linear-fractional separable function over a feasible region defined by a convex inequality constraint or linear inequality constraint, and bounds on the variables (box constraints). These problems are interesting from both theoretical and practical points of view because they arise in some mathematical programming problems and in various practical problems. Polynomial algorithms for solving such problems are proposed and their convergence is proved. Some examples and results of numerical experiments are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信