{"title":"利用非线性回归分析估算移动应用程序开发在计划阶段的工作量","authors":"S. Prykhodko, N. Prykhodko, K. Knyrik","doi":"10.2478/acss-2020-0019","DOIUrl":null,"url":null,"abstract":"Abstract The authors consider the construction of a nonlinear multiple regression model, its confidence and prediction intervals to evaluate the efforts of mobile application development in the planning phase based on the multivariate normalizing transformation and outlier detection. The constructed model is compared to the linear regression model and nonlinear regression models based on the univariate transformations, such as the decimal logarithm, Box–Cox, and Johnson transformation. This model, in comparison with other regression models, has better prediction accuracy.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"572 1","pages":"172 - 179"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimating the Efforts of Mobile Application Development in the Planning Phase Using Nonlinear Regression Analysis\",\"authors\":\"S. Prykhodko, N. Prykhodko, K. Knyrik\",\"doi\":\"10.2478/acss-2020-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The authors consider the construction of a nonlinear multiple regression model, its confidence and prediction intervals to evaluate the efforts of mobile application development in the planning phase based on the multivariate normalizing transformation and outlier detection. The constructed model is compared to the linear regression model and nonlinear regression models based on the univariate transformations, such as the decimal logarithm, Box–Cox, and Johnson transformation. This model, in comparison with other regression models, has better prediction accuracy.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"572 1\",\"pages\":\"172 - 179\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2020-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2020-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Estimating the Efforts of Mobile Application Development in the Planning Phase Using Nonlinear Regression Analysis
Abstract The authors consider the construction of a nonlinear multiple regression model, its confidence and prediction intervals to evaluate the efforts of mobile application development in the planning phase based on the multivariate normalizing transformation and outlier detection. The constructed model is compared to the linear regression model and nonlinear regression models based on the univariate transformations, such as the decimal logarithm, Box–Cox, and Johnson transformation. This model, in comparison with other regression models, has better prediction accuracy.