Ming-bo Zhou , Jing-lin Tang , Jie Yang , Cun-yu Wang
{"title":"一种新设计的压硬化22MnMoB钢的定制性能","authors":"Ming-bo Zhou , Jing-lin Tang , Jie Yang , Cun-yu Wang","doi":"10.1016/S1006-706X(17)30077-8","DOIUrl":null,"url":null,"abstract":"<div><p>A novel 22MnMoB hot stamping steel was designed. The continuous cooling transformation (CCT) measurement of the 22MnMoB steel showed that the ferrite-bainite microstructure could be obtained at cooling rates lower than 25 °C/s, and the complete martensite structure required the cooling rate higher than 30 °C/s. The experiments with non-uniform die temperatures were carried out to obtain tailored properties. The results showed that strength of 1411 MPa and elongation of 6% could be obtained in the hard zone, and strength of 916 MPa and elongation of 9% could be obtained in the soft zone, which can be realized by controlling the die temperature at 400 °C. The transition zone was found smooth and could be beneficial to reduce the stress concentration and therefore improve the performance of components.</p></div>","PeriodicalId":64470,"journal":{"name":"Journal of Iron and Steel Research(International)","volume":"24 5","pages":"Pages 508-512"},"PeriodicalIF":3.1000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30077-8","citationCount":"8","resultStr":"{\"title\":\"Tailored properties of a novelly-designed press-hardened 22MnMoB steel\",\"authors\":\"Ming-bo Zhou , Jing-lin Tang , Jie Yang , Cun-yu Wang\",\"doi\":\"10.1016/S1006-706X(17)30077-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel 22MnMoB hot stamping steel was designed. The continuous cooling transformation (CCT) measurement of the 22MnMoB steel showed that the ferrite-bainite microstructure could be obtained at cooling rates lower than 25 °C/s, and the complete martensite structure required the cooling rate higher than 30 °C/s. The experiments with non-uniform die temperatures were carried out to obtain tailored properties. The results showed that strength of 1411 MPa and elongation of 6% could be obtained in the hard zone, and strength of 916 MPa and elongation of 9% could be obtained in the soft zone, which can be realized by controlling the die temperature at 400 °C. The transition zone was found smooth and could be beneficial to reduce the stress concentration and therefore improve the performance of components.</p></div>\",\"PeriodicalId\":64470,\"journal\":{\"name\":\"Journal of Iron and Steel Research(International)\",\"volume\":\"24 5\",\"pages\":\"Pages 508-512\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-706X(17)30077-8\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research(International)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1006706X17300778\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research(International)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006706X17300778","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Tailored properties of a novelly-designed press-hardened 22MnMoB steel
A novel 22MnMoB hot stamping steel was designed. The continuous cooling transformation (CCT) measurement of the 22MnMoB steel showed that the ferrite-bainite microstructure could be obtained at cooling rates lower than 25 °C/s, and the complete martensite structure required the cooling rate higher than 30 °C/s. The experiments with non-uniform die temperatures were carried out to obtain tailored properties. The results showed that strength of 1411 MPa and elongation of 6% could be obtained in the hard zone, and strength of 916 MPa and elongation of 9% could be obtained in the soft zone, which can be realized by controlling the die temperature at 400 °C. The transition zone was found smooth and could be beneficial to reduce the stress concentration and therefore improve the performance of components.