{"title":"基于SCSNA和统计神经动力学的双向联想记忆分析","authors":"Hayaru Shouno, M. Okada","doi":"10.1143/JPSJ.73.2406","DOIUrl":null,"url":null,"abstract":"Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical–mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.","PeriodicalId":93135,"journal":{"name":"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...","volume":"90 1","pages":"239-245"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Bidirectional Associative Memory Using SCSNA and Statistical Neurodynamics\",\"authors\":\"Hayaru Shouno, M. Okada\",\"doi\":\"10.1143/JPSJ.73.2406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical–mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.\",\"PeriodicalId\":93135,\"journal\":{\"name\":\"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...\",\"volume\":\"90 1\",\"pages\":\"239-245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1143/JPSJ.73.2406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PDPTA '19 : proceedings of the 2019 International Conference on Parallel & Distributed Processing Techniquess & Applications. International Conference on Parallel and Distributed Processing Techniques and Applications (2019 : Las Vegas,...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1143/JPSJ.73.2406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Bidirectional Associative Memory Using SCSNA and Statistical Neurodynamics
Bidirectional associative memory (BAM) is a kind of an artificial neural network used to memorize and retrieve heterogeneous pattern pairs. Many efforts have been made to improve BAM from the the viewpoint of computer application, and few theoretical studies have been done. We investigated the theoretical characteristics of BAM using a framework of statistical–mechanical analysis. To investigate the equilibrium state of BAM, we applied self-consistent signal to noise analysis (SCSNA) and obtained a macroscopic parameter equations and relative capacity. Moreover, to investigate not only the equilibrium state but also the retrieval process of reaching the equilibrium state, we applied statistical neurodynamics to the update rule of BAM and obtained evolution equations for the macroscopic parameters. These evolution equations are consistent with the results of SCSNA in the equilibrium state.