{"title":"秩树子网络中模式的极限定理","authors":"Michael Fuchs, Hexuan Liu, Tsan-Cheng Yu","doi":"10.1002/rsa.21177","DOIUrl":null,"url":null,"abstract":"We prove limit laws for the number of occurrences of a pattern on the fringe of a ranked tree-child network which is picked uniformly at random. Our results extend the limit law for cherries proved by Bienvenu et al. (2022). For patterns of height $1$ and $2$, we show that they either occur frequently (mean is asymptotically linear and limit law is normal) or sporadically (mean is asymptotically constant and limit law is Poisson) or not all (mean tends to $0$ and limit law is degenerate). We expect that these are the only possible limit laws for any fringe pattern.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"10 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Limit theorems for patterns in ranked tree‐child networks\",\"authors\":\"Michael Fuchs, Hexuan Liu, Tsan-Cheng Yu\",\"doi\":\"10.1002/rsa.21177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove limit laws for the number of occurrences of a pattern on the fringe of a ranked tree-child network which is picked uniformly at random. Our results extend the limit law for cherries proved by Bienvenu et al. (2022). For patterns of height $1$ and $2$, we show that they either occur frequently (mean is asymptotically linear and limit law is normal) or sporadically (mean is asymptotically constant and limit law is Poisson) or not all (mean tends to $0$ and limit law is degenerate). We expect that these are the only possible limit laws for any fringe pattern.\",\"PeriodicalId\":54523,\"journal\":{\"name\":\"Random Structures & Algorithms\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Structures & Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21177\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Limit theorems for patterns in ranked tree‐child networks
We prove limit laws for the number of occurrences of a pattern on the fringe of a ranked tree-child network which is picked uniformly at random. Our results extend the limit law for cherries proved by Bienvenu et al. (2022). For patterns of height $1$ and $2$, we show that they either occur frequently (mean is asymptotically linear and limit law is normal) or sporadically (mean is asymptotically constant and limit law is Poisson) or not all (mean tends to $0$ and limit law is degenerate). We expect that these are the only possible limit laws for any fringe pattern.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.