基于注意力神经网络的顶夸克对重构

Seung-Jin Yang, Jason Y. Lee, Inkyu Park, I. Watson
{"title":"基于注意力神经网络的顶夸克对重构","authors":"Seung-Jin Yang, Jason Y. Lee, Inkyu Park, I. Watson","doi":"10.22323/1.390.0348","DOIUrl":null,"url":null,"abstract":"For many top quark measurements, it is essential to reconstruct the top quark from its decay products. For example, the top quark pair production process in the all-jets final state has six jets initiated from daughter partons and additional jets from initial or final state radiation. Due to the many possible permutations, it is very hard to assign jets to partons. We use a deep neural network with an attention-based architecture together with a new objective function for the jet-parton assignment problem. Our novel deep learning model and the physics-inspired objective function enable jet-parton assignment using jet-wise input variables while the attention mechanism bypasses the combinatorial explosion that usually leads to intractable computational requirements. The model can also be applied as a classifier to reject the overwhelming QCD background, showing increased performance over standard classification methods.","PeriodicalId":20428,"journal":{"name":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Top quark pair reconstruction using an attention-based neural network\",\"authors\":\"Seung-Jin Yang, Jason Y. Lee, Inkyu Park, I. Watson\",\"doi\":\"10.22323/1.390.0348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many top quark measurements, it is essential to reconstruct the top quark from its decay products. For example, the top quark pair production process in the all-jets final state has six jets initiated from daughter partons and additional jets from initial or final state radiation. Due to the many possible permutations, it is very hard to assign jets to partons. We use a deep neural network with an attention-based architecture together with a new objective function for the jet-parton assignment problem. Our novel deep learning model and the physics-inspired objective function enable jet-parton assignment using jet-wise input variables while the attention mechanism bypasses the combinatorial explosion that usually leads to intractable computational requirements. The model can also be applied as a classifier to reject the overwhelming QCD background, showing increased performance over standard classification methods.\",\"PeriodicalId\":20428,\"journal\":{\"name\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.390.0348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 40th International Conference on High Energy physics — PoS(ICHEP2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.390.0348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于许多顶夸克的测量,从其衰变产物中重建顶夸克是必不可少的。例如,顶夸克对在全喷流最终态的产生过程中,有6个由子粒子发起的喷流,以及来自初始或最终态辐射的额外喷流。由于有许多可能的排列,很难将射流分配给部分。我们使用了一个基于注意力结构的深度神经网络和一个新的目标函数来解决喷气部分分配问题。我们新颖的深度学习模型和物理启发的目标函数使用射流输入变量实现射流部分分配,而注意力机制绕过通常导致难以处理的计算需求的组合爆炸。该模型还可以用作分类器来拒绝压倒性的QCD背景,显示出比标准分类方法更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Top quark pair reconstruction using an attention-based neural network
For many top quark measurements, it is essential to reconstruct the top quark from its decay products. For example, the top quark pair production process in the all-jets final state has six jets initiated from daughter partons and additional jets from initial or final state radiation. Due to the many possible permutations, it is very hard to assign jets to partons. We use a deep neural network with an attention-based architecture together with a new objective function for the jet-parton assignment problem. Our novel deep learning model and the physics-inspired objective function enable jet-parton assignment using jet-wise input variables while the attention mechanism bypasses the combinatorial explosion that usually leads to intractable computational requirements. The model can also be applied as a classifier to reject the overwhelming QCD background, showing increased performance over standard classification methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信