{"title":"半线性椭圆型逆障碍问题的域导数","authors":"F. Hettlich","doi":"10.3934/ipi.2021071","DOIUrl":null,"url":null,"abstract":"We consider the recovering of the shape of a cavity from the Cauchy datum on an accessible boundary in case of semilinear boundary value problems. Existence and a characterization of the domain derivative of solutions of semilinear elliptic equations are proven. Furthermore, the result is applied to solve an inverse obstacle problem with an iterative regularization scheme. By some numerical examples its performance in case of a Kerr type nonlinearity is illustrated.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The domain derivative for semilinear elliptic inverse obstacle problems\",\"authors\":\"F. Hettlich\",\"doi\":\"10.3934/ipi.2021071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the recovering of the shape of a cavity from the Cauchy datum on an accessible boundary in case of semilinear boundary value problems. Existence and a characterization of the domain derivative of solutions of semilinear elliptic equations are proven. Furthermore, the result is applied to solve an inverse obstacle problem with an iterative regularization scheme. By some numerical examples its performance in case of a Kerr type nonlinearity is illustrated.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2021071\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021071","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The domain derivative for semilinear elliptic inverse obstacle problems
We consider the recovering of the shape of a cavity from the Cauchy datum on an accessible boundary in case of semilinear boundary value problems. Existence and a characterization of the domain derivative of solutions of semilinear elliptic equations are proven. Furthermore, the result is applied to solve an inverse obstacle problem with an iterative regularization scheme. By some numerical examples its performance in case of a Kerr type nonlinearity is illustrated.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.