q-op, q- system和Bethe Ansatz II:广义未成年人

IF 1.2 1区 数学 Q1 MATHEMATICS
P. Koroteev, A. Zeitlin
{"title":"q-op, q- system和Bethe Ansatz II:广义未成年人","authors":"P. Koroteev, A. Zeitlin","doi":"10.1515/crelle-2022-0084","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we describe a certain kind of q-connections on a projective line, namely Z-twisted ( G , q ) {(G,q)} -opers with regular singularities using the language of generalized minors. In part one we explored the correspondence between these q-connections and 𝑄𝑄 \\mathit{QQ} -systems/Bethe Ansatz equations. Here we associate to a Z-twisted ( G , q ) {(G,q)} -oper a class of meromorphic sections of a G-bundle, satisfying certain difference equations, which we refer to as ( G , q ) {(G,q)} -Wronskians. Among other things, we show that the 𝑄𝑄 \\mathit{QQ} -systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"q-opers, QQ-systems, and Bethe Ansatz II: Generalized minors\",\"authors\":\"P. Koroteev, A. Zeitlin\",\"doi\":\"10.1515/crelle-2022-0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we describe a certain kind of q-connections on a projective line, namely Z-twisted ( G , q ) {(G,q)} -opers with regular singularities using the language of generalized minors. In part one we explored the correspondence between these q-connections and 𝑄𝑄 \\\\mathit{QQ} -systems/Bethe Ansatz equations. Here we associate to a Z-twisted ( G , q ) {(G,q)} -oper a class of meromorphic sections of a G-bundle, satisfying certain difference equations, which we refer to as ( G , q ) {(G,q)} -Wronskians. Among other things, we show that the 𝑄𝑄 \\\\mathit{QQ} -systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0084\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0084","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文用广义小调的语言描述了射线上的一类q-连接,即具有正则奇点的z -捻(G,q) {(G,q)} -算子。在第一部分中,我们探讨了这些q-连接与𝑄𝑄\mathit{QQ} -系统/Bethe Ansatz方程之间的对应关系。在这里,我们将一个Z-twisted (G,q) {(G,q)} -oper联系到一类G束的亚纯截面,它们满足一定的差分方程,我们称之为(G,q) {(G,q)} -Wronskians。除此之外,我们证明𝑄𝑄\mathit{QQ} -系统及其扩展作为广义次元之间的关系出现,从而将Bethe Ansatz方程置于双Bruhat细胞理论中已知的簇突变框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
q-opers, QQ-systems, and Bethe Ansatz II: Generalized minors
Abstract In this paper, we describe a certain kind of q-connections on a projective line, namely Z-twisted ( G , q ) {(G,q)} -opers with regular singularities using the language of generalized minors. In part one we explored the correspondence between these q-connections and 𝑄𝑄 \mathit{QQ} -systems/Bethe Ansatz equations. Here we associate to a Z-twisted ( G , q ) {(G,q)} -oper a class of meromorphic sections of a G-bundle, satisfying certain difference equations, which we refer to as ( G , q ) {(G,q)} -Wronskians. Among other things, we show that the 𝑄𝑄 \mathit{QQ} -systems and their extensions emerge as the relations between generalized minors, thereby putting the Bethe Ansatz equations in the framework of cluster mutations known in the theory of double Bruhat cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信