{"title":"由反射、球形设计和水蛭∗网络生成的组","authors":"Pierre de la Harpe , Boris Venkov","doi":"10.1016/S0764-4442(01)02142-5","DOIUrl":null,"url":null,"abstract":"<div><p>For a finite subset <span><math><mtext>X⊂</mtext><mtext>R</mtext><msup><mi></mi><mn>n</mn></msup></math></span> of unit vectors, <em>G</em><sub><em>X</em></sub> denotes the group generated by reflections <em>r</em><sub><em>x</em></sub> fixing hyperplanes orthogonal to <em>x</em>∈<em>X</em>. When <em>X</em> is a spherical <em>t</em>-design and <em>π</em><sup>(<em>k</em>)</sup><sub>har</sub> the representation of <em>G</em><sub><em>X</em></sub> in the harmonic polynomials in <em>n</em> variables of degree <em>k</em>, the spectrum of the Markov operator <span><math><mtext>1</mtext><mtext>|X|</mtext><mtext>∑</mtext><msub><mi></mi><mn>x∈X</mn></msub><mtext>π</mtext><msup><mi></mi><mn>(k)</mn></msup><msub><mi></mi><mn><mtext>har</mtext></mn></msub><mtext>(r</mtext><msub><mi></mi><mn>x</mn></msub><mtext>)</mtext></math></span> is analyzed. If <em>k</em> is small enough, this operator is a scalar multiple of the identity. When <em>X</em> is the spherical 11-design of short vectors in a Leech lattice, it is shown that the infinite group <em>G</em><sub><em>X</em></sub> contains the finite Conway group Co and is a quotient of a remarkable Coxeter group.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 8","pages":"Pages 745-750"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02142-5","citationCount":"5","resultStr":"{\"title\":\"Groupes engendrés par des réflexions, designs sphériques et réseau de Leech∗\",\"authors\":\"Pierre de la Harpe , Boris Venkov\",\"doi\":\"10.1016/S0764-4442(01)02142-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a finite subset <span><math><mtext>X⊂</mtext><mtext>R</mtext><msup><mi></mi><mn>n</mn></msup></math></span> of unit vectors, <em>G</em><sub><em>X</em></sub> denotes the group generated by reflections <em>r</em><sub><em>x</em></sub> fixing hyperplanes orthogonal to <em>x</em>∈<em>X</em>. When <em>X</em> is a spherical <em>t</em>-design and <em>π</em><sup>(<em>k</em>)</sup><sub>har</sub> the representation of <em>G</em><sub><em>X</em></sub> in the harmonic polynomials in <em>n</em> variables of degree <em>k</em>, the spectrum of the Markov operator <span><math><mtext>1</mtext><mtext>|X|</mtext><mtext>∑</mtext><msub><mi></mi><mn>x∈X</mn></msub><mtext>π</mtext><msup><mi></mi><mn>(k)</mn></msup><msub><mi></mi><mn><mtext>har</mtext></mn></msub><mtext>(r</mtext><msub><mi></mi><mn>x</mn></msub><mtext>)</mtext></math></span> is analyzed. If <em>k</em> is small enough, this operator is a scalar multiple of the identity. When <em>X</em> is the spherical 11-design of short vectors in a Leech lattice, it is shown that the infinite group <em>G</em><sub><em>X</em></sub> contains the finite Conway group Co and is a quotient of a remarkable Coxeter group.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 8\",\"pages\":\"Pages 745-750\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02142-5\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Groupes engendrés par des réflexions, designs sphériques et réseau de Leech∗
For a finite subset of unit vectors, GX denotes the group generated by reflections rx fixing hyperplanes orthogonal to x∈X. When X is a spherical t-design and π(k)har the representation of GX in the harmonic polynomials in n variables of degree k, the spectrum of the Markov operator is analyzed. If k is small enough, this operator is a scalar multiple of the identity. When X is the spherical 11-design of short vectors in a Leech lattice, it is shown that the infinite group GX contains the finite Conway group Co and is a quotient of a remarkable Coxeter group.