时间离散下随机哈密顿系统的长期分析

R. D'Ambrosio, Stefano Di Giovacchino
{"title":"时间离散下随机哈密顿系统的长期分析","authors":"R. D'Ambrosio, Stefano Di Giovacchino","doi":"10.1137/21m1458612","DOIUrl":null,"url":null,"abstract":"In this talk, we focus our investigation on providing long-term estimates of the Hamiltonian deviation computed along numerical approximations to the solutions of stochastic Hamiltonian systems, both of Itô and Statonovich types. It is well-known that the expected Hamiltonian of an Itô Hamiltonian system with additive noise exhibits a linear drift in time [2], while the Hamiltonian function is conserved along the exact flow of a Stratonovich Hamiltonian system [3, 4]. Here, we address our attention to providing modified differential equations associated to suitable discretizations for above problems, by means of weak backward error analysis arguments [1, 5, 6]. Then, long-term estimates are provided both for Itô and Stratonovich Hamiltonian systems, revealing the presence of parasitic terms affecting the overall conservation accuracy. Finally, selected numerical experiments are provided to confirm the theoretical analysis. This talk is based on a joint work with Raffaele D’Ambrosio (University of L’Aquila).","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":"21 1","pages":"257-"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long-Term Analysis of Stochastic Hamiltonian Systems Under Time Discretizations\",\"authors\":\"R. D'Ambrosio, Stefano Di Giovacchino\",\"doi\":\"10.1137/21m1458612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we focus our investigation on providing long-term estimates of the Hamiltonian deviation computed along numerical approximations to the solutions of stochastic Hamiltonian systems, both of Itô and Statonovich types. It is well-known that the expected Hamiltonian of an Itô Hamiltonian system with additive noise exhibits a linear drift in time [2], while the Hamiltonian function is conserved along the exact flow of a Stratonovich Hamiltonian system [3, 4]. Here, we address our attention to providing modified differential equations associated to suitable discretizations for above problems, by means of weak backward error analysis arguments [1, 5, 6]. Then, long-term estimates are provided both for Itô and Stratonovich Hamiltonian systems, revealing the presence of parasitic terms affecting the overall conservation accuracy. Finally, selected numerical experiments are provided to confirm the theoretical analysis. This talk is based on a joint work with Raffaele D’Ambrosio (University of L’Aquila).\",\"PeriodicalId\":21812,\"journal\":{\"name\":\"SIAM J. Sci. Comput.\",\"volume\":\"21 1\",\"pages\":\"257-\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Sci. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1458612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1458612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这次演讲中,我们的研究重点是提供长期估计的哈密顿偏差沿数值近似计算随机哈密顿系统的解决方案,Itô和Statonovich类型。众所周知,具有加性噪声的Itô哈密顿系统的期望哈密顿函数在时间上呈线性漂移[2],而哈密顿函数沿着Stratonovich哈密顿系统的精确流动是守恒的[3,4]。在这里,我们通过弱后向误差分析参数[1,5,6]来提供与上述问题相关的适当离散化的修正微分方程。然后,提供了Itô和Stratonovich hamilton系统的长期估计,揭示了寄生项影响整体守恒精度的存在。最后,通过数值实验对理论分析进行了验证。这次演讲是基于与Raffaele D’ambrosio(拉奎拉大学)的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Term Analysis of Stochastic Hamiltonian Systems Under Time Discretizations
In this talk, we focus our investigation on providing long-term estimates of the Hamiltonian deviation computed along numerical approximations to the solutions of stochastic Hamiltonian systems, both of Itô and Statonovich types. It is well-known that the expected Hamiltonian of an Itô Hamiltonian system with additive noise exhibits a linear drift in time [2], while the Hamiltonian function is conserved along the exact flow of a Stratonovich Hamiltonian system [3, 4]. Here, we address our attention to providing modified differential equations associated to suitable discretizations for above problems, by means of weak backward error analysis arguments [1, 5, 6]. Then, long-term estimates are provided both for Itô and Stratonovich Hamiltonian systems, revealing the presence of parasitic terms affecting the overall conservation accuracy. Finally, selected numerical experiments are provided to confirm the theoretical analysis. This talk is based on a joint work with Raffaele D’Ambrosio (University of L’Aquila).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信