阿拉伯手语字母识别的手分割

Ouiem Bchir
{"title":"阿拉伯手语字母识别的手分割","authors":"Ouiem Bchir","doi":"10.5121/csit.2020.100701","DOIUrl":null,"url":null,"abstract":"This research aims to separate the hands from the background of colored images representing the Arabic Sign language alphabet gestures. This hand segmentation task is one of the main challenges of image based Sign language recognition systems due to the issue of skin tones variations and the complexity of the background. For this purpose, an efficient system that segment the hand object and separate it from the rest of the image based on deep learning is investigated. More specifically, the DeepLab v3+ network architecture that is a combination of spatial pyramid pooling module and encode-decoder structure will be trained to learn the visual characteristics of the hand and segment it with detailed boundaries. The effectiveness of the proposed solution is investigated on a large dataset of size 12000 with an accuracy of 98%, an IoU of 93% of and BF score of 87%.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hand Segmentation for Arabic Sign Language Alphabet Recognition\",\"authors\":\"Ouiem Bchir\",\"doi\":\"10.5121/csit.2020.100701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to separate the hands from the background of colored images representing the Arabic Sign language alphabet gestures. This hand segmentation task is one of the main challenges of image based Sign language recognition systems due to the issue of skin tones variations and the complexity of the background. For this purpose, an efficient system that segment the hand object and separate it from the rest of the image based on deep learning is investigated. More specifically, the DeepLab v3+ network architecture that is a combination of spatial pyramid pooling module and encode-decoder structure will be trained to learn the visual characteristics of the hand and segment it with detailed boundaries. The effectiveness of the proposed solution is investigated on a large dataset of size 12000 with an accuracy of 98%, an IoU of 93% of and BF score of 87%.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2020.100701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.100701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究旨在将手从代表阿拉伯手语字母手势的彩色图像背景中分离出来。由于肤色变化和背景的复杂性,手部分割任务是基于图像的手语识别系统面临的主要挑战之一。为此,研究了一种基于深度学习的手部物体分割并与图像其他部分分离的高效系统。更具体地说,将训练DeepLab v3+网络架构,该架构是空间金字塔池模块和编解码器结构的组合,以学习手的视觉特征并对其进行详细的边界分割。在规模为12000的大型数据集上,研究了所提出的解决方案的有效性,准确率为98%,IoU为93%,BF分数为87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand Segmentation for Arabic Sign Language Alphabet Recognition
This research aims to separate the hands from the background of colored images representing the Arabic Sign language alphabet gestures. This hand segmentation task is one of the main challenges of image based Sign language recognition systems due to the issue of skin tones variations and the complexity of the background. For this purpose, an efficient system that segment the hand object and separate it from the rest of the image based on deep learning is investigated. More specifically, the DeepLab v3+ network architecture that is a combination of spatial pyramid pooling module and encode-decoder structure will be trained to learn the visual characteristics of the hand and segment it with detailed boundaries. The effectiveness of the proposed solution is investigated on a large dataset of size 12000 with an accuracy of 98%, an IoU of 93% of and BF score of 87%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信