可持续大藻卡拉胶生物质转化为l -乳酸的新兴技术:最新进展综述

Kevin Tian Xiang Tong, I. Tan, H. Foo, Stephanie Yen San Chan, T. Hadibarata, M. Lam
{"title":"可持续大藻卡拉胶生物质转化为l -乳酸的新兴技术:最新进展综述","authors":"Kevin Tian Xiang Tong, I. Tan, H. Foo, Stephanie Yen San Chan, T. Hadibarata, M. Lam","doi":"10.1051/matecconf/202337701019","DOIUrl":null,"url":null,"abstract":"The environmental awareness and concerns (plastic pollution) worldwide have driven the development of sustainable and environmentally friendly biopolymer derived from renewable materials. Biopolymers, especially L-lactic acid (L-LA) have played a crucial role in manufacturing polylactic acid, a biodegradable thermoplastic. Recently, L-LA production from non-edible macroalgal biomass has gained immense attraction due to it offers the simplest saccharification process for the biorefinery route. However, the commercialization of macroalgal-based L-LA is still limited due to high production costs. This paper has comprehensively reviewed the potential and development of third-generation feedstock for L-LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock are also deliberated in detail. Furthermore, this review provides a conceivable picture of macroalgae-based L-LA biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging technologies for conversion of sustainable macroalgal carrageenan biomass into L-lactic acid: A state-of-the-art review\",\"authors\":\"Kevin Tian Xiang Tong, I. Tan, H. Foo, Stephanie Yen San Chan, T. Hadibarata, M. Lam\",\"doi\":\"10.1051/matecconf/202337701019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The environmental awareness and concerns (plastic pollution) worldwide have driven the development of sustainable and environmentally friendly biopolymer derived from renewable materials. Biopolymers, especially L-lactic acid (L-LA) have played a crucial role in manufacturing polylactic acid, a biodegradable thermoplastic. Recently, L-LA production from non-edible macroalgal biomass has gained immense attraction due to it offers the simplest saccharification process for the biorefinery route. However, the commercialization of macroalgal-based L-LA is still limited due to high production costs. This paper has comprehensively reviewed the potential and development of third-generation feedstock for L-LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock are also deliberated in detail. Furthermore, this review provides a conceivable picture of macroalgae-based L-LA biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players.\",\"PeriodicalId\":18309,\"journal\":{\"name\":\"MATEC Web of Conferences\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATEC Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/matecconf/202337701019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337701019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

世界范围内的环保意识和对塑料污染的关注推动了可再生材料衍生的可持续环保生物聚合物的发展。生物聚合物,特别是l -乳酸(L-LA)在制造聚乳酸(一种可生物降解的热塑性塑料)中起着至关重要的作用。最近,从非食用大藻生物质中生产L-LA获得了巨大的吸引力,因为它为生物炼制路线提供了最简单的糖化过程。然而,由于生产成本高,基于大藻的L-LA的商业化仍然受到限制。本文全面回顾了用于L-LA生产的第三代原料的潜力和发展,包括潜在商业化目的需要克服的重大技术障碍。然后,深入了解最先进的水解和发酵技术,使用大型藻类作为原料也进行了详细的审议。此外,本文还展望了基于大藻类的L-LA生物炼制的前景和未来的研究方向,可为科学家、决策者和行业参与者提供重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging technologies for conversion of sustainable macroalgal carrageenan biomass into L-lactic acid: A state-of-the-art review
The environmental awareness and concerns (plastic pollution) worldwide have driven the development of sustainable and environmentally friendly biopolymer derived from renewable materials. Biopolymers, especially L-lactic acid (L-LA) have played a crucial role in manufacturing polylactic acid, a biodegradable thermoplastic. Recently, L-LA production from non-edible macroalgal biomass has gained immense attraction due to it offers the simplest saccharification process for the biorefinery route. However, the commercialization of macroalgal-based L-LA is still limited due to high production costs. This paper has comprehensively reviewed the potential and development of third-generation feedstock for L-LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock are also deliberated in detail. Furthermore, this review provides a conceivable picture of macroalgae-based L-LA biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信