响应面法预测CO2激光改性杨木表面粗糙度

IF 1.2 4区 农林科学 Q3 MATERIALS SCIENCE, PAPER & WOOD
Rongrong Li, Chujun He, Wei-xing Xu, Xiaodong Wang
{"title":"响应面法预测CO2激光改性杨木表面粗糙度","authors":"Rongrong Li, Chujun He, Wei-xing Xu, Xiaodong Wang","doi":"10.4067/s0718-221x2022000100442","DOIUrl":null,"url":null,"abstract":"Due to the advantages of short treatment period, no wastewater and oil produced, the CO 2 laser is applied as an environment friendly thermal treatment for wood materials to improve the wood properties, such as ap-pearance, color and wettability, among others. However, the morphological features of treated wood surface are also changed, which have negative effects on wooden product properties. To reveal the change tendency of surface roughness during laser irradiation, the common indexes of average roughness (Ra) and mean peak-to-valley height (Rz) were chosen to evaluate the surface roughness. The response surface methodology was selected to arrange the experiments and analyze the influences of laser parameters on surface roughness. The results showed that the poplar wood got rougher with the increased laser power, but the surface roughness decreased with increased feed speed and path spacing, due to the total heat absorption varied under different com bination of laser parameters. The ANOVA results showed that the selected quadratic models for Ra , Rz , Ra and Rz were significant due to the values of probability value (“Prob>F”) less than 0,05. In this case, all the input laser parameters were also the significant model terms for variation of surface roughness. The values of correlation coefficient were very close to 1, which meant the selected quadratic models could give accurate prediction of surface roughness for laser treated wood. Therefore, it is of great significance to predict the surface roughness of the modified wood surface scientifically and to guide the selection of reasonable modifi cation process parameters.","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"87 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Prediction of surface roughness of CO2 laser modified poplar wood via response surface methodology\",\"authors\":\"Rongrong Li, Chujun He, Wei-xing Xu, Xiaodong Wang\",\"doi\":\"10.4067/s0718-221x2022000100442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the advantages of short treatment period, no wastewater and oil produced, the CO 2 laser is applied as an environment friendly thermal treatment for wood materials to improve the wood properties, such as ap-pearance, color and wettability, among others. However, the morphological features of treated wood surface are also changed, which have negative effects on wooden product properties. To reveal the change tendency of surface roughness during laser irradiation, the common indexes of average roughness (Ra) and mean peak-to-valley height (Rz) were chosen to evaluate the surface roughness. The response surface methodology was selected to arrange the experiments and analyze the influences of laser parameters on surface roughness. The results showed that the poplar wood got rougher with the increased laser power, but the surface roughness decreased with increased feed speed and path spacing, due to the total heat absorption varied under different com bination of laser parameters. The ANOVA results showed that the selected quadratic models for Ra , Rz , Ra and Rz were significant due to the values of probability value (“Prob>F”) less than 0,05. In this case, all the input laser parameters were also the significant model terms for variation of surface roughness. The values of correlation coefficient were very close to 1, which meant the selected quadratic models could give accurate prediction of surface roughness for laser treated wood. Therefore, it is of great significance to predict the surface roughness of the modified wood surface scientifically and to guide the selection of reasonable modifi cation process parameters.\",\"PeriodicalId\":18092,\"journal\":{\"name\":\"Maderas-ciencia Y Tecnologia\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maderas-ciencia Y Tecnologia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4067/s0718-221x2022000100442\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2022000100442","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 9

摘要

由于处理周期短、不产生废水、不出油等优点,co2激光被应用于木材材料的环保热处理,以改善木材的外观、颜色和润湿性等性能。然而,处理后的木材表面的形态特征也发生了变化,这对木制品的性能产生了负面影响。为了揭示激光照射过程中表面粗糙度的变化趋势,选择了平均粗糙度(Ra)和平均峰谷高(Rz)这两个常用指标来评价表面粗糙度。选择响应面方法安排试验和分析激光参数对表面粗糙度的影响。结果表明:随着激光功率的增大,杨木的表面粗糙度增大,但随着进给速度和路径间距的增大,表面粗糙度减小,这是由于不同激光参数组合下的总吸热量不同所致。方差分析结果表明,由于概率值(“Prob>F”)小于0.05,所选择的Ra、Rz、Ra和Rz的二次模型具有显著性。在这种情况下,所有输入的激光参数也是表面粗糙度变化的重要模型项。相关系数非常接近于1,表明所选择的二次模型能够准确地预测激光处理木材的表面粗糙度。因此,科学预测改性木材表面粗糙度,指导合理选择改性工艺参数具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of surface roughness of CO2 laser modified poplar wood via response surface methodology
Due to the advantages of short treatment period, no wastewater and oil produced, the CO 2 laser is applied as an environment friendly thermal treatment for wood materials to improve the wood properties, such as ap-pearance, color and wettability, among others. However, the morphological features of treated wood surface are also changed, which have negative effects on wooden product properties. To reveal the change tendency of surface roughness during laser irradiation, the common indexes of average roughness (Ra) and mean peak-to-valley height (Rz) were chosen to evaluate the surface roughness. The response surface methodology was selected to arrange the experiments and analyze the influences of laser parameters on surface roughness. The results showed that the poplar wood got rougher with the increased laser power, but the surface roughness decreased with increased feed speed and path spacing, due to the total heat absorption varied under different com bination of laser parameters. The ANOVA results showed that the selected quadratic models for Ra , Rz , Ra and Rz were significant due to the values of probability value (“Prob>F”) less than 0,05. In this case, all the input laser parameters were also the significant model terms for variation of surface roughness. The values of correlation coefficient were very close to 1, which meant the selected quadratic models could give accurate prediction of surface roughness for laser treated wood. Therefore, it is of great significance to predict the surface roughness of the modified wood surface scientifically and to guide the selection of reasonable modifi cation process parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Maderas-ciencia Y Tecnologia
Maderas-ciencia Y Tecnologia 工程技术-材料科学:纸与木材
CiteScore
2.60
自引率
13.30%
发文量
33
审稿时长
>12 weeks
期刊介绍: Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信