用加速牛顿法求球面上的投影

P. Rodríguez
{"title":"用加速牛顿法求球面上的投影","authors":"P. Rodríguez","doi":"10.1109/MLSP.2017.8168161","DOIUrl":null,"url":null,"abstract":"We present a simple and computationally efficient algorithm, based on the accelerated Newton's method, to solve the root finding problem associated with the projection onto the ℓ1-ball problem. Considering an interpretation of the Michelot's algorithm as Newton method, our algorithm can be understood as an accelerated version of the Michelot's algorithm, that needs significantly less major iterations to converge to the solution. Although the worst-case performance of the propose algorithm is O(n2), it exhibits in practice an O(n) performance and it is empirically demonstrated that it is competitive or faster than existing methods.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"14 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An accelerated newton's method for projections onto the ℓ1-ball\",\"authors\":\"P. Rodríguez\",\"doi\":\"10.1109/MLSP.2017.8168161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple and computationally efficient algorithm, based on the accelerated Newton's method, to solve the root finding problem associated with the projection onto the ℓ1-ball problem. Considering an interpretation of the Michelot's algorithm as Newton method, our algorithm can be understood as an accelerated version of the Michelot's algorithm, that needs significantly less major iterations to converge to the solution. Although the worst-case performance of the propose algorithm is O(n2), it exhibits in practice an O(n) performance and it is empirically demonstrated that it is competitive or faster than existing methods.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"14 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于加速牛顿法的简单高效的求根算法,用于求解与1球投影相关的求根问题。考虑到将Michelot算法解释为牛顿方法,我们的算法可以理解为Michelot算法的加速版本,它需要更少的主要迭代才能收敛到解决方案。虽然该算法的最坏情况性能为O(n2),但在实践中表现出O(n)的性能,并且经验证明它比现有方法具有竞争力或更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An accelerated newton's method for projections onto the ℓ1-ball
We present a simple and computationally efficient algorithm, based on the accelerated Newton's method, to solve the root finding problem associated with the projection onto the ℓ1-ball problem. Considering an interpretation of the Michelot's algorithm as Newton method, our algorithm can be understood as an accelerated version of the Michelot's algorithm, that needs significantly less major iterations to converge to the solution. Although the worst-case performance of the propose algorithm is O(n2), it exhibits in practice an O(n) performance and it is empirically demonstrated that it is competitive or faster than existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信