N. Kawao, Chiho Shimada, H. Itoh, R. Kuroda, A. Kawabata
{"title":"辣椒平抑制蛋白酶激活受体-2引发的大鼠热痛觉过敏,但对伤害感觉无抑制作用。","authors":"N. Kawao, Chiho Shimada, H. Itoh, R. Kuroda, A. Kawabata","doi":"10.1254/JJP.89.184","DOIUrl":null,"url":null,"abstract":"Protease-activated receptor-2 (PAR-2), expressed in sensory neurons, triggers thermal hyperalgesia, nociceptive behavior and spinal Fos expression in rats. In the present study, we examined if the nociceptive processing by PAR-2 is mediated by trans-activation of capsaicin receptors. The thermal hyperalgesia following an intraplantar (i.pl.) administration of the PAR-2-activating peptide SLIGRL-NH2 was completely abolished by the capsaicin receptor antagonist capsazepine. In contrast, neither the nociceptive behavior nor spinal Fos expression in response to i.pl. SLIGRL-NH2 were attenuated by capsazepine. Our data imply that trans-activation of capsaicin receptors by PAR-2 might be involved in the PAR-2-triggered thermal hyperalgesia, but not nociception.","PeriodicalId":14750,"journal":{"name":"Japanese journal of pharmacology","volume":"122 1","pages":"184-7"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Capsazepine inhibits thermal hyperalgesia but not nociception triggered by protease-activated receptor-2 in rats.\",\"authors\":\"N. Kawao, Chiho Shimada, H. Itoh, R. Kuroda, A. Kawabata\",\"doi\":\"10.1254/JJP.89.184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protease-activated receptor-2 (PAR-2), expressed in sensory neurons, triggers thermal hyperalgesia, nociceptive behavior and spinal Fos expression in rats. In the present study, we examined if the nociceptive processing by PAR-2 is mediated by trans-activation of capsaicin receptors. The thermal hyperalgesia following an intraplantar (i.pl.) administration of the PAR-2-activating peptide SLIGRL-NH2 was completely abolished by the capsaicin receptor antagonist capsazepine. In contrast, neither the nociceptive behavior nor spinal Fos expression in response to i.pl. SLIGRL-NH2 were attenuated by capsazepine. Our data imply that trans-activation of capsaicin receptors by PAR-2 might be involved in the PAR-2-triggered thermal hyperalgesia, but not nociception.\",\"PeriodicalId\":14750,\"journal\":{\"name\":\"Japanese journal of pharmacology\",\"volume\":\"122 1\",\"pages\":\"184-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japanese journal of pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/JJP.89.184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese journal of pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/JJP.89.184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Capsazepine inhibits thermal hyperalgesia but not nociception triggered by protease-activated receptor-2 in rats.
Protease-activated receptor-2 (PAR-2), expressed in sensory neurons, triggers thermal hyperalgesia, nociceptive behavior and spinal Fos expression in rats. In the present study, we examined if the nociceptive processing by PAR-2 is mediated by trans-activation of capsaicin receptors. The thermal hyperalgesia following an intraplantar (i.pl.) administration of the PAR-2-activating peptide SLIGRL-NH2 was completely abolished by the capsaicin receptor antagonist capsazepine. In contrast, neither the nociceptive behavior nor spinal Fos expression in response to i.pl. SLIGRL-NH2 were attenuated by capsazepine. Our data imply that trans-activation of capsaicin receptors by PAR-2 might be involved in the PAR-2-triggered thermal hyperalgesia, but not nociception.