二次拟群与Mendelsohn设计

A. Drápal, T. Griggs, Andrew R. Kozlik
{"title":"二次拟群与Mendelsohn设计","authors":"A. Drápal, T. Griggs, Andrew R. Kozlik","doi":"10.1142/s0218196722500308","DOIUrl":null,"url":null,"abstract":"Let the product of points [Formula: see text] and [Formula: see text] be the vertex [Formula: see text] of the right isosceles triangle for which [Formula: see text] is the base, and [Formula: see text] is oriented anticlockwise. This yields a quasigroup that satisfies laws [Formula: see text], [Formula: see text] and [Formula: see text]. Such quasigroups are called quadratical. Quasigroups that satisfy only the latter two laws are equivalent to perfect Mendelsohn designs of length four ([Formula: see text]). This paper examines various algebraic identities induced by [Formula: see text], classifies finite quadratical quasigroups, and shows how the square structure of quadratical quasigroups is associated with toroidal grids.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"29 1","pages":"683-715"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratical quasigroups and Mendelsohn designs\",\"authors\":\"A. Drápal, T. Griggs, Andrew R. Kozlik\",\"doi\":\"10.1142/s0218196722500308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let the product of points [Formula: see text] and [Formula: see text] be the vertex [Formula: see text] of the right isosceles triangle for which [Formula: see text] is the base, and [Formula: see text] is oriented anticlockwise. This yields a quasigroup that satisfies laws [Formula: see text], [Formula: see text] and [Formula: see text]. Such quasigroups are called quadratical. Quasigroups that satisfy only the latter two laws are equivalent to perfect Mendelsohn designs of length four ([Formula: see text]). This paper examines various algebraic identities induced by [Formula: see text], classifies finite quadratical quasigroups, and shows how the square structure of quadratical quasigroups is associated with toroidal grids.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"29 1\",\"pages\":\"683-715\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]与[公式:见文]之积为以[公式:见文]为底的直角等腰三角形的顶点[公式:见文],且[公式:见文]为逆时针方向。这就产生了一个满足定律[公式:见文]、[公式:见文]和[公式:见文]的拟群。这样的拟群称为二次群。只满足后两个定律的拟群等价于长度为4的完美门德尔松设计(公式:见原文)。本文研究了由[公式:见文]导出的各种代数恒等式,对有限二次拟群进行了分类,并说明了二次拟群的方形结构如何与环面网格相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratical quasigroups and Mendelsohn designs
Let the product of points [Formula: see text] and [Formula: see text] be the vertex [Formula: see text] of the right isosceles triangle for which [Formula: see text] is the base, and [Formula: see text] is oriented anticlockwise. This yields a quasigroup that satisfies laws [Formula: see text], [Formula: see text] and [Formula: see text]. Such quasigroups are called quadratical. Quasigroups that satisfy only the latter two laws are equivalent to perfect Mendelsohn designs of length four ([Formula: see text]). This paper examines various algebraic identities induced by [Formula: see text], classifies finite quadratical quasigroups, and shows how the square structure of quadratical quasigroups is associated with toroidal grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信