纳米银染色真丝织物的着色性、色牢度、抗菌和防紫外线性能

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Kittinaovarat, Pornchiwin Banjong, P. Sujaridworakun
{"title":"纳米银染色真丝织物的着色性、色牢度、抗菌和防紫外线性能","authors":"S. Kittinaovarat, Pornchiwin Banjong, P. Sujaridworakun","doi":"10.55713/jmmm.v33i3.1683","DOIUrl":null,"url":null,"abstract":"This research studied the effects of different factors used in an in-situ method for forming colored silver nanoparticles (AgNP) on the properties of silk fabric; namely color shading, color strength, relative unlevelness index, color fastness to washing, antibacterial and UV shielding properties. In addition, improvement with an acrylic binder on color fastness to washing and antibacterial property after 20 cycles of washing of AgNP-treated silk fabric were also investigated. It was found that the optimum condition for treatment by the in-situ method was 2.0% owf of silver nitrate (AgNO3) solution, AgNO3 to trisodium citrate ratio at 1:3 (%w/w), exhaustion temperature at 90°C and treatment time at 90 or 120 min at pH 4.0. The higher concentration of those two factors, the higher the dark brown shade on the AgNP-treated silk fabrics. AgNP-treated silk fabric had a better UV protection than that of the pristine silk fabric. After 20 washes, the color fastness to washing of AgNP-treated silk fabric either with or without acrylic binder coating was rated low. Antibacterial activity against S. aureus of AgNP-treated silk fabric without coating acrylic binder decreased to 40% of bacterial reduction, but AgNP-treated silk fabric coated with acrylic binder still had 100% antibacterial property.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"9 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Color shading, color fastness, antibacterial and ultraviolet protection properties of silk fabric colored by silver nanoparticles\",\"authors\":\"S. Kittinaovarat, Pornchiwin Banjong, P. Sujaridworakun\",\"doi\":\"10.55713/jmmm.v33i3.1683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research studied the effects of different factors used in an in-situ method for forming colored silver nanoparticles (AgNP) on the properties of silk fabric; namely color shading, color strength, relative unlevelness index, color fastness to washing, antibacterial and UV shielding properties. In addition, improvement with an acrylic binder on color fastness to washing and antibacterial property after 20 cycles of washing of AgNP-treated silk fabric were also investigated. It was found that the optimum condition for treatment by the in-situ method was 2.0% owf of silver nitrate (AgNO3) solution, AgNO3 to trisodium citrate ratio at 1:3 (%w/w), exhaustion temperature at 90°C and treatment time at 90 or 120 min at pH 4.0. The higher concentration of those two factors, the higher the dark brown shade on the AgNP-treated silk fabrics. AgNP-treated silk fabric had a better UV protection than that of the pristine silk fabric. After 20 washes, the color fastness to washing of AgNP-treated silk fabric either with or without acrylic binder coating was rated low. Antibacterial activity against S. aureus of AgNP-treated silk fabric without coating acrylic binder decreased to 40% of bacterial reduction, but AgNP-treated silk fabric coated with acrylic binder still had 100% antibacterial property.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i3.1683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i3.1683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了原位法制备有色纳米银(AgNP)过程中不同因素对真丝织物性能的影响;即色度、颜色强度、相对不均匀度、耐洗色牢度、抗菌和紫外线屏蔽性能。此外,还研究了在agnp处理的真丝织物洗涤20次后,添加丙烯酸粘结剂对其耐洗色牢度和抗菌性能的改善。结果表明,原位法处理的最佳条件为硝酸银(AgNO3)溶液质量分数为2.0%,AgNO3与柠檬酸三钠的比例为1:3 (%w/w),浸出温度为90℃,处理时间为90 min或120 min, pH为4.0。这两种因素的浓度越高,agnp处理后的真丝织物的深褐色越高。agnp处理后的真丝织物的防紫外线性能优于原始真丝织物。经过20次洗涤,agnp处理的真丝织物,无论是否有丙烯酸粘结剂涂层,耐洗涤色牢度都很低。未涂布丙烯酸粘结剂的agnp处理真丝织物对金黄色葡萄球菌的抑菌活性下降至40%,但涂布丙烯酸粘结剂的agnp处理真丝织物仍具有100%的抗菌性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color shading, color fastness, antibacterial and ultraviolet protection properties of silk fabric colored by silver nanoparticles
This research studied the effects of different factors used in an in-situ method for forming colored silver nanoparticles (AgNP) on the properties of silk fabric; namely color shading, color strength, relative unlevelness index, color fastness to washing, antibacterial and UV shielding properties. In addition, improvement with an acrylic binder on color fastness to washing and antibacterial property after 20 cycles of washing of AgNP-treated silk fabric were also investigated. It was found that the optimum condition for treatment by the in-situ method was 2.0% owf of silver nitrate (AgNO3) solution, AgNO3 to trisodium citrate ratio at 1:3 (%w/w), exhaustion temperature at 90°C and treatment time at 90 or 120 min at pH 4.0. The higher concentration of those two factors, the higher the dark brown shade on the AgNP-treated silk fabrics. AgNP-treated silk fabric had a better UV protection than that of the pristine silk fabric. After 20 washes, the color fastness to washing of AgNP-treated silk fabric either with or without acrylic binder coating was rated low. Antibacterial activity against S. aureus of AgNP-treated silk fabric without coating acrylic binder decreased to 40% of bacterial reduction, but AgNP-treated silk fabric coated with acrylic binder still had 100% antibacterial property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信