{"title":"在消息传递程序中建模网络争用","authors":"C. A. Moritz, M. Frank","doi":"10.1145/277851.277933","DOIUrl":null,"url":null,"abstract":"In many real applications, for example those with frequent and irregular communication patterns or those using large messages, network contention and contention for message processing resources can be a significant part of the total execution time. This paper presents a new cost model, called LoGPC, that extends the LogP [9] and LogGP [4] models to account for the impact of network contention and network interface DMA behavior on the performance of message-passing programs.We validate LoGPC by analyzing three applications implemented with Active Messages [11, 18] on the MIT Alewife multiprocessor. Our analysis shows that network contention accounts for up to 50% of the total execution time. In addition, we show that the impact of communication locality on the communication costs is at most a factor of two on Alewife. Finally, we use the model to identify tradeoffs between synchronous and asynchronous message passing styles.","PeriodicalId":13128,"journal":{"name":"IEEE Trans. Parallel Distributed Syst.","volume":"51 1","pages":"404-415"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"159","resultStr":"{\"title\":\"LoGPC: modeling network contention in message-passing programs\",\"authors\":\"C. A. Moritz, M. Frank\",\"doi\":\"10.1145/277851.277933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many real applications, for example those with frequent and irregular communication patterns or those using large messages, network contention and contention for message processing resources can be a significant part of the total execution time. This paper presents a new cost model, called LoGPC, that extends the LogP [9] and LogGP [4] models to account for the impact of network contention and network interface DMA behavior on the performance of message-passing programs.We validate LoGPC by analyzing three applications implemented with Active Messages [11, 18] on the MIT Alewife multiprocessor. Our analysis shows that network contention accounts for up to 50% of the total execution time. In addition, we show that the impact of communication locality on the communication costs is at most a factor of two on Alewife. Finally, we use the model to identify tradeoffs between synchronous and asynchronous message passing styles.\",\"PeriodicalId\":13128,\"journal\":{\"name\":\"IEEE Trans. Parallel Distributed Syst.\",\"volume\":\"51 1\",\"pages\":\"404-415\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"159\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Parallel Distributed Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/277851.277933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Parallel Distributed Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/277851.277933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LoGPC: modeling network contention in message-passing programs
In many real applications, for example those with frequent and irregular communication patterns or those using large messages, network contention and contention for message processing resources can be a significant part of the total execution time. This paper presents a new cost model, called LoGPC, that extends the LogP [9] and LogGP [4] models to account for the impact of network contention and network interface DMA behavior on the performance of message-passing programs.We validate LoGPC by analyzing three applications implemented with Active Messages [11, 18] on the MIT Alewife multiprocessor. Our analysis shows that network contention accounts for up to 50% of the total execution time. In addition, we show that the impact of communication locality on the communication costs is at most a factor of two on Alewife. Finally, we use the model to identify tradeoffs between synchronous and asynchronous message passing styles.