用向量方法推广剩余定理

IF 0.5 Q3 MATHEMATICS
Marcos A. Hidalgo Rosas, F. Laudano
{"title":"用向量方法推广剩余定理","authors":"Marcos A. Hidalgo Rosas, F. Laudano","doi":"10.52846/ami.v49i1.1478","DOIUrl":null,"url":null,"abstract":"\"We propose a new computational proof for the division algorithm that, using vector algebra, generalizes the remainder theorem to divisions for polynomials of any degree over a generic integral domain. Then, we extend this result to calculate the pseudo-divisions. Later, starting from the previous theorems, we obtain some algorithms that calculate the pseudo-remainder and the pseudo-quotient while avoiding long division. Finally, we provide examples and comparisons indicating that these algorithms are efficient in divisions by sparse polynomials and their divisors, as cyclotomic polynomials.\"","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"2 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vectorial approach to generalize the remainder theorem\",\"authors\":\"Marcos A. Hidalgo Rosas, F. Laudano\",\"doi\":\"10.52846/ami.v49i1.1478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"We propose a new computational proof for the division algorithm that, using vector algebra, generalizes the remainder theorem to divisions for polynomials of any degree over a generic integral domain. Then, we extend this result to calculate the pseudo-divisions. Later, starting from the previous theorems, we obtain some algorithms that calculate the pseudo-remainder and the pseudo-quotient while avoiding long division. Finally, we provide examples and comparisons indicating that these algorithms are efficient in divisions by sparse polynomials and their divisors, as cyclotomic polynomials.\\\"\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i1.1478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i1.1478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

“我们提出了一个新的除法算法的计算证明,使用向量代数,将余数定理推广到一般积分域上任意次多项式的除法。然后,我们将这个结果推广到伪除法的计算中。然后,从前面的定理出发,我们得到了一些在避免长除法的情况下计算伪余数和伪商的算法。最后,我们提供了实例和比较,表明这些算法在稀疏多项式及其除数(如环形多项式)的除法中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vectorial approach to generalize the remainder theorem
"We propose a new computational proof for the division algorithm that, using vector algebra, generalizes the remainder theorem to divisions for polynomials of any degree over a generic integral domain. Then, we extend this result to calculate the pseudo-divisions. Later, starting from the previous theorems, we obtain some algorithms that calculate the pseudo-remainder and the pseudo-quotient while avoiding long division. Finally, we provide examples and comparisons indicating that these algorithms are efficient in divisions by sparse polynomials and their divisors, as cyclotomic polynomials."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信