基于上下文建模的相似性评价

Mohamed H. Haggag, Marwa M. A. ELFattah, Ahmed Mohammed Ahmed
{"title":"基于上下文建模的相似性评价","authors":"Mohamed H. Haggag, Marwa M. A. ELFattah, Ahmed Mohammed Ahmed","doi":"10.54623/fue.fcij.4.1.5","DOIUrl":null,"url":null,"abstract":"Measuring Text similarity problem still one of opened fields for research area in natural language processing and text related research such as text mining, Web page retrieval, information retrieval and textual entailment. Several measures have been developed for measuring similarity between two texts: such as Wu and Palmer, Leacock and Chodorow measure and others . But these measures do not take into consideration the contextual information of the text .This paper introduces new model for measuring semantic similarity between two text segments. This model is based on building new contextual structure for extracting semantic similarity. This approach can contribute in solving many NLP problems such as te xt entailment and information retrieval fields.","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Similarity Evaluation Based on Contextual Modelling\",\"authors\":\"Mohamed H. Haggag, Marwa M. A. ELFattah, Ahmed Mohammed Ahmed\",\"doi\":\"10.54623/fue.fcij.4.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring Text similarity problem still one of opened fields for research area in natural language processing and text related research such as text mining, Web page retrieval, information retrieval and textual entailment. Several measures have been developed for measuring similarity between two texts: such as Wu and Palmer, Leacock and Chodorow measure and others . But these measures do not take into consideration the contextual information of the text .This paper introduces new model for measuring semantic similarity between two text segments. This model is based on building new contextual structure for extracting semantic similarity. This approach can contribute in solving many NLP problems such as te xt entailment and information retrieval fields.\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54623/fue.fcij.4.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54623/fue.fcij.4.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文本相似度度量问题仍然是自然语言处理和文本挖掘、网页检索、信息检索、文本蕴涵等文本相关研究领域的研究热点之一。已经开发了几种测量两个文本之间相似性的方法:如Wu和Palmer, Leacock和Chodorow测量等。但是这些度量方法没有考虑到文本的语境信息,本文提出了一种新的文本段语义相似度度量模型。该模型基于构建新的上下文结构来提取语义相似度。这种方法有助于解决文本蕴涵和信息检索领域的许多NLP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Evaluation Based on Contextual Modelling
Measuring Text similarity problem still one of opened fields for research area in natural language processing and text related research such as text mining, Web page retrieval, information retrieval and textual entailment. Several measures have been developed for measuring similarity between two texts: such as Wu and Palmer, Leacock and Chodorow measure and others . But these measures do not take into consideration the contextual information of the text .This paper introduces new model for measuring semantic similarity between two text segments. This model is based on building new contextual structure for extracting semantic similarity. This approach can contribute in solving many NLP problems such as te xt entailment and information retrieval fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信