Liu Guoyou, Liu Chenguang, Wang Weijiang, Yang Mengqi, Hang Bingpeng
{"title":"基于单次学习的多特征人体姿态模型识别研究","authors":"Liu Guoyou, Liu Chenguang, Wang Weijiang, Yang Mengqi, Hang Bingpeng","doi":"10.12086/OEE.2021.200099","DOIUrl":null,"url":null,"abstract":"With the development of human-computer interaction, virtual reality, and other related fields, human posture recognition has become a hot research topic. Since the human body belongs to a non-rigid model and has time-varying characteristics, the accuracy and robustness of recognition are not ideal. Based on the KinectV2 so-matosensory camera to collect skeletal information, this paper proposes a one-shot learning model matching method based on human body angle and distance characteristics. First, feature extraction is performed on the collected bone information, and the joint point vector angle and joint point displacement are calculated and a threshold is set. Secondly, the pose to be measured is matched with the template pose, and the recognition is successful if the threshold limit is met. Experimental results show that the method can detect and recognize human poses within the defined threshold in real-time, which improves the accuracy and robustness of recognition.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on multi-feature human pose model recognition based on one-shot learning\",\"authors\":\"Liu Guoyou, Liu Chenguang, Wang Weijiang, Yang Mengqi, Hang Bingpeng\",\"doi\":\"10.12086/OEE.2021.200099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of human-computer interaction, virtual reality, and other related fields, human posture recognition has become a hot research topic. Since the human body belongs to a non-rigid model and has time-varying characteristics, the accuracy and robustness of recognition are not ideal. Based on the KinectV2 so-matosensory camera to collect skeletal information, this paper proposes a one-shot learning model matching method based on human body angle and distance characteristics. First, feature extraction is performed on the collected bone information, and the joint point vector angle and joint point displacement are calculated and a threshold is set. Secondly, the pose to be measured is matched with the template pose, and the recognition is successful if the threshold limit is met. Experimental results show that the method can detect and recognize human poses within the defined threshold in real-time, which improves the accuracy and robustness of recognition.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Research on multi-feature human pose model recognition based on one-shot learning
With the development of human-computer interaction, virtual reality, and other related fields, human posture recognition has become a hot research topic. Since the human body belongs to a non-rigid model and has time-varying characteristics, the accuracy and robustness of recognition are not ideal. Based on the KinectV2 so-matosensory camera to collect skeletal information, this paper proposes a one-shot learning model matching method based on human body angle and distance characteristics. First, feature extraction is performed on the collected bone information, and the joint point vector angle and joint point displacement are calculated and a threshold is set. Secondly, the pose to be measured is matched with the template pose, and the recognition is successful if the threshold limit is met. Experimental results show that the method can detect and recognize human poses within the defined threshold in real-time, which improves the accuracy and robustness of recognition.