无监督点云补全中基于能量的剩余潜在输运

Rui-Qing Cui, Shi Qiu, Saeed Anwar, Jing Zhang, N. Barnes
{"title":"无监督点云补全中基于能量的剩余潜在输运","authors":"Rui-Qing Cui, Shi Qiu, Saeed Anwar, Jing Zhang, N. Barnes","doi":"10.48550/arXiv.2211.06820","DOIUrl":null,"url":null,"abstract":"Unsupervised point cloud completion aims to infer the whole geometry of a partial object observation without requiring partial-complete correspondence. Differing from existing deterministic approaches, we advocate generative modeling based unsupervised point cloud completion to explore the missing correspondence. Specifically, we propose a novel framework that performs completion by transforming a partial shape encoding into a complete one using a latent transport module, and it is designed as a latent-space energy-based model (EBM) in an encoder-decoder architecture, aiming to learn a probability distribution conditioned on the partial shape encoding. To train the latent code transport module and the encoder-decoder network jointly, we introduce a residual sampling strategy, where the residual captures the domain gap between partial and complete shape latent spaces. As a generative model-based framework, our method can produce uncertainty maps consistent with human perception, leading to explainable unsupervised point cloud completion. We experimentally show that the proposed method produces high-fidelity completion results, outperforming state-of-the-art models by a significant margin.","PeriodicalId":72437,"journal":{"name":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","volume":"93 21 1","pages":"48"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-Based Residual Latent Transport for Unsupervised Point Cloud Completion\",\"authors\":\"Rui-Qing Cui, Shi Qiu, Saeed Anwar, Jing Zhang, N. Barnes\",\"doi\":\"10.48550/arXiv.2211.06820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised point cloud completion aims to infer the whole geometry of a partial object observation without requiring partial-complete correspondence. Differing from existing deterministic approaches, we advocate generative modeling based unsupervised point cloud completion to explore the missing correspondence. Specifically, we propose a novel framework that performs completion by transforming a partial shape encoding into a complete one using a latent transport module, and it is designed as a latent-space energy-based model (EBM) in an encoder-decoder architecture, aiming to learn a probability distribution conditioned on the partial shape encoding. To train the latent code transport module and the encoder-decoder network jointly, we introduce a residual sampling strategy, where the residual captures the domain gap between partial and complete shape latent spaces. As a generative model-based framework, our method can produce uncertainty maps consistent with human perception, leading to explainable unsupervised point cloud completion. We experimentally show that the proposed method produces high-fidelity completion results, outperforming state-of-the-art models by a significant margin.\",\"PeriodicalId\":72437,\"journal\":{\"name\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"volume\":\"93 21 1\",\"pages\":\"48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.06820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMVC : proceedings of the British Machine Vision Conference. British Machine Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.06820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无监督点云补全的目的是在不需要部分完全对应的情况下推断局部物体观测的整个几何形状。与现有的确定性方法不同,我们提倡基于无监督点云补全的生成建模来探索缺失的对应关系。具体来说,我们提出了一种新的框架,通过使用潜在传输模块将部分形状编码转换为完整编码来完成补全,并将其设计为编码器-解码器架构中的基于潜在空间能量的模型(EBM),旨在学习部分形状编码条件下的概率分布。为了联合训练隐码传输模块和编码器-解码器网络,我们引入了残差采样策略,残差捕获部分和完全形状隐空间之间的域间隙。作为一个基于生成模型的框架,我们的方法可以生成与人类感知一致的不确定性映射,从而实现可解释的无监督点云补全。我们通过实验表明,所提出的方法产生高保真的完成结果,显著优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Based Residual Latent Transport for Unsupervised Point Cloud Completion
Unsupervised point cloud completion aims to infer the whole geometry of a partial object observation without requiring partial-complete correspondence. Differing from existing deterministic approaches, we advocate generative modeling based unsupervised point cloud completion to explore the missing correspondence. Specifically, we propose a novel framework that performs completion by transforming a partial shape encoding into a complete one using a latent transport module, and it is designed as a latent-space energy-based model (EBM) in an encoder-decoder architecture, aiming to learn a probability distribution conditioned on the partial shape encoding. To train the latent code transport module and the encoder-decoder network jointly, we introduce a residual sampling strategy, where the residual captures the domain gap between partial and complete shape latent spaces. As a generative model-based framework, our method can produce uncertainty maps consistent with human perception, leading to explainable unsupervised point cloud completion. We experimentally show that the proposed method produces high-fidelity completion results, outperforming state-of-the-art models by a significant margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信