高效检测器自适应视频中目标检测

Pramod Sharma, R. Nevatia
{"title":"高效检测器自适应视频中目标检测","authors":"Pramod Sharma, R. Nevatia","doi":"10.1109/CVPR.2013.418","DOIUrl":null,"url":null,"abstract":"In this work, we present a novel and efficient detector adaptation method which improves the performance of an offline trained classifier (baseline classifier) by adapting it to new test datasets. We address two critical aspects of adaptation methods: generalizability and computational efficiency. We propose an adaptation method, which can be applied to various baseline classifiers and is computationally efficient also. For a given test video, we collect online samples in an unsupervised manner and train a random fern adaptive classifier. The adaptive classifier improves precision of the baseline classifier by validating the obtained detection responses from baseline classifier as correct detections or false alarms. Experiments demonstrate generalizability, computational efficiency and effectiveness of our method, as we compare our method with state of the art approaches for the problem of human detection and show good performance with high computational efficiency on two different baseline classifiers.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"721 1","pages":"3254-3261"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Efficient Detector Adaptation for Object Detection in a Video\",\"authors\":\"Pramod Sharma, R. Nevatia\",\"doi\":\"10.1109/CVPR.2013.418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a novel and efficient detector adaptation method which improves the performance of an offline trained classifier (baseline classifier) by adapting it to new test datasets. We address two critical aspects of adaptation methods: generalizability and computational efficiency. We propose an adaptation method, which can be applied to various baseline classifiers and is computationally efficient also. For a given test video, we collect online samples in an unsupervised manner and train a random fern adaptive classifier. The adaptive classifier improves precision of the baseline classifier by validating the obtained detection responses from baseline classifier as correct detections or false alarms. Experiments demonstrate generalizability, computational efficiency and effectiveness of our method, as we compare our method with state of the art approaches for the problem of human detection and show good performance with high computational efficiency on two different baseline classifiers.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"721 1\",\"pages\":\"3254-3261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

在这项工作中,我们提出了一种新颖有效的检测器自适应方法,该方法通过使离线训练的分类器(基线分类器)适应新的测试数据集来提高其性能。我们解决了适应方法的两个关键方面:概括性和计算效率。我们提出了一种自适应方法,该方法可以应用于各种基线分类器,并且计算效率也很高。对于给定的测试视频,我们以无监督的方式在线收集样本并训练随机蕨类植物自适应分类器。自适应分类器通过将基线分类器获得的检测响应验证为正确检测或假警报来提高基线分类器的精度。实验证明了我们的方法的可泛化性、计算效率和有效性,因为我们将我们的方法与人类检测问题的最新方法进行了比较,并在两个不同的基线分类器上显示出良好的性能和高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Detector Adaptation for Object Detection in a Video
In this work, we present a novel and efficient detector adaptation method which improves the performance of an offline trained classifier (baseline classifier) by adapting it to new test datasets. We address two critical aspects of adaptation methods: generalizability and computational efficiency. We propose an adaptation method, which can be applied to various baseline classifiers and is computationally efficient also. For a given test video, we collect online samples in an unsupervised manner and train a random fern adaptive classifier. The adaptive classifier improves precision of the baseline classifier by validating the obtained detection responses from baseline classifier as correct detections or false alarms. Experiments demonstrate generalizability, computational efficiency and effectiveness of our method, as we compare our method with state of the art approaches for the problem of human detection and show good performance with high computational efficiency on two different baseline classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信