流式子模块最大化:动态的海量数据汇总

Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause
{"title":"流式子模块最大化:动态的海量数据汇总","authors":"Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause","doi":"10.1145/2623330.2623637","DOIUrl":null,"url":null,"abstract":"How can one summarize a massive data set \"on the fly\", i.e., without even having seen it in its entirety? In this paper, we address the problem of extracting representative elements from a large stream of data. I.e., we would like to select a subset of say k data points from the stream that are most representative according to some objective function. Many natural notions of \"representativeness\" satisfy submodularity, an intuitive notion of diminishing returns. Thus, such problems can be reduced to maximizing a submodular set function subject to a cardinality constraint. Classical approaches to submodular maximization require full access to the data set. We develop the first efficient streaming algorithm with constant factor 1/2-ε approximation guarantee to the optimum solution, requiring only a single pass through the data, and memory independent of data size. In our experiments, we extensively evaluate the effectiveness of our approach on several applications, including training large-scale kernel methods and exemplar-based clustering, on millions of data points. We observe that our streaming method, while achieving practically the same utility value, runs about 100 times faster than previous work.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"269 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"327","resultStr":"{\"title\":\"Streaming submodular maximization: massive data summarization on the fly\",\"authors\":\"Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, Andreas Krause\",\"doi\":\"10.1145/2623330.2623637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can one summarize a massive data set \\\"on the fly\\\", i.e., without even having seen it in its entirety? In this paper, we address the problem of extracting representative elements from a large stream of data. I.e., we would like to select a subset of say k data points from the stream that are most representative according to some objective function. Many natural notions of \\\"representativeness\\\" satisfy submodularity, an intuitive notion of diminishing returns. Thus, such problems can be reduced to maximizing a submodular set function subject to a cardinality constraint. Classical approaches to submodular maximization require full access to the data set. We develop the first efficient streaming algorithm with constant factor 1/2-ε approximation guarantee to the optimum solution, requiring only a single pass through the data, and memory independent of data size. In our experiments, we extensively evaluate the effectiveness of our approach on several applications, including training large-scale kernel methods and exemplar-based clustering, on millions of data points. We observe that our streaming method, while achieving practically the same utility value, runs about 100 times faster than previous work.\",\"PeriodicalId\":20536,\"journal\":{\"name\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"volume\":\"269 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"327\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2623330.2623637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 327

摘要

一个人怎么能“在飞行中”总结一个庞大的数据集,也就是说,甚至没有看到它的整体?在本文中,我们解决了从大量数据流中提取代表性元素的问题。也就是说,我们希望根据某个目标函数从流中选择最具代表性的k个数据点的子集。“代表性”的许多自然概念满足子模块性,这是一种收益递减的直观概念。因此,这样的问题可以简化为在基数约束下最大化一个次模集合函数。实现子模块最大化的经典方法需要对数据集进行完全访问。我们开发了第一个高效的流算法,该算法具有常数因子1/2-ε近似保证最优解,只需要一次遍历数据,并且内存与数据大小无关。在我们的实验中,我们广泛地评估了我们的方法在几个应用程序上的有效性,包括在数百万个数据点上训练大规模核方法和基于示例的聚类。我们观察到,我们的流方法在实现几乎相同的实用价值的同时,运行速度比以前的工作快100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Streaming submodular maximization: massive data summarization on the fly
How can one summarize a massive data set "on the fly", i.e., without even having seen it in its entirety? In this paper, we address the problem of extracting representative elements from a large stream of data. I.e., we would like to select a subset of say k data points from the stream that are most representative according to some objective function. Many natural notions of "representativeness" satisfy submodularity, an intuitive notion of diminishing returns. Thus, such problems can be reduced to maximizing a submodular set function subject to a cardinality constraint. Classical approaches to submodular maximization require full access to the data set. We develop the first efficient streaming algorithm with constant factor 1/2-ε approximation guarantee to the optimum solution, requiring only a single pass through the data, and memory independent of data size. In our experiments, we extensively evaluate the effectiveness of our approach on several applications, including training large-scale kernel methods and exemplar-based clustering, on millions of data points. We observe that our streaming method, while achieving practically the same utility value, runs about 100 times faster than previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信