无穷视界上最优控制问题中值函数构造的数值方法

IF 0.3 Q4 MATHEMATICS
A. L. Bagno, A. Tarasyev
{"title":"无穷视界上最优控制问题中值函数构造的数值方法","authors":"A. L. Bagno, A. Tarasyev","doi":"10.20537/2226-3594-2019-53-02","DOIUrl":null,"url":null,"abstract":"The article is devoted to the analysis of optimal control problems with infinite time horizon. These problems arise in economic growth models and in stabilization problems for dynamic systems. The problem peculiarity is a quality functional with an unbounded integrand which is discounted by an exponential index. The problem is reduced to an equivalent optimal control problem with the stationary value function. It is shown that the value function is the generalized minimax solution of the corresponding Hamilton–Jacobi equation. The boundary condition for the stationary value function is replaced by the property of the Hölder continuity and the sublinear growth condition. A backward procedure on infinite time horizon is proposed for construction of the value function. This procedure approximates the value function as the generalized minimax solution of the stationary Hamilton–Jacobi equation. Its convergence is based on the contraction mapping method defined on the family of uniformly bounded and Hölder continuous functions. After the special change of variables the procedure is realized in numerical finite difference schemes on strongly invariant compact sets for optimal control problems and differential games.","PeriodicalId":42053,"journal":{"name":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical methods for construction of value functions in optimal control problems on an infinite horizon\",\"authors\":\"A. L. Bagno, A. Tarasyev\",\"doi\":\"10.20537/2226-3594-2019-53-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to the analysis of optimal control problems with infinite time horizon. These problems arise in economic growth models and in stabilization problems for dynamic systems. The problem peculiarity is a quality functional with an unbounded integrand which is discounted by an exponential index. The problem is reduced to an equivalent optimal control problem with the stationary value function. It is shown that the value function is the generalized minimax solution of the corresponding Hamilton–Jacobi equation. The boundary condition for the stationary value function is replaced by the property of the Hölder continuity and the sublinear growth condition. A backward procedure on infinite time horizon is proposed for construction of the value function. This procedure approximates the value function as the generalized minimax solution of the stationary Hamilton–Jacobi equation. Its convergence is based on the contraction mapping method defined on the family of uniformly bounded and Hölder continuous functions. After the special change of variables the procedure is realized in numerical finite difference schemes on strongly invariant compact sets for optimal control problems and differential games.\",\"PeriodicalId\":42053,\"journal\":{\"name\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20537/2226-3594-2019-53-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Instituta Matematiki i Informatiki-Udmurtskogo Gosudarstvennogo Universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20537/2226-3594-2019-53-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究具有无限时间范围的最优控制问题。这些问题出现在经济增长模型和动态系统的稳定问题中。问题的奇异性是一个被积无界的质量泛函,被积无界被指数折现。将该问题简化为具有平稳值函数的等效最优控制问题。结果表明,该值函数是相应的Hamilton-Jacobi方程的广义极大极小解。用Hölder连续性的性质和次线性增长条件代替了平稳值函数的边界条件。提出了一种无限时间范围上的逆向构造值函数的方法。这个过程近似于值函数作为平稳哈密顿-雅可比方程的广义极大极小解。它的收敛性是基于在一致有界和Hölder连续函数族上定义的收缩映射方法。对于最优控制问题和微分对策,在特殊变量变化后,用强不变紧集上的数值有限差分格式实现了该过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical methods for construction of value functions in optimal control problems on an infinite horizon
The article is devoted to the analysis of optimal control problems with infinite time horizon. These problems arise in economic growth models and in stabilization problems for dynamic systems. The problem peculiarity is a quality functional with an unbounded integrand which is discounted by an exponential index. The problem is reduced to an equivalent optimal control problem with the stationary value function. It is shown that the value function is the generalized minimax solution of the corresponding Hamilton–Jacobi equation. The boundary condition for the stationary value function is replaced by the property of the Hölder continuity and the sublinear growth condition. A backward procedure on infinite time horizon is proposed for construction of the value function. This procedure approximates the value function as the generalized minimax solution of the stationary Hamilton–Jacobi equation. Its convergence is based on the contraction mapping method defined on the family of uniformly bounded and Hölder continuous functions. After the special change of variables the procedure is realized in numerical finite difference schemes on strongly invariant compact sets for optimal control problems and differential games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信