{"title":"通过地下和地面实体之间的协同作用解锁边际资源","authors":"Roger Atasi, Albertino Prabowo, Mitterank Siboro","doi":"10.2118/205672-ms","DOIUrl":null,"url":null,"abstract":"\n Tunu is one of the biggest gas fields in Indonesia with 1400 km2 area in Mahakam Delta, East Kalimantan. This field has been producing since 1990 with cumulative production of more than 9.5 tcf and 190 mbbl condensate by the end of 2020 from over 1000 operating wells. Today, Tunu field contributes for approximately 40% of Mahakam production. After 30 years of production, Tunu production level is currently in declining phase, shown by its yearly production profile which exhibits a declining trend since 2008. Furthermore, Tunu well development project was considered marginally economical due to depleting reserve per well. Thus, an integrated study was conducted in order to reduce surface expenditure cost of Tunu pipeline based on current operating parameters. The study consisted of WHSIP history matching to determine new pipeline design pressure, evaluation of future wells production lifetime, and adjustment of pipeline corrosion allowance based on actual corrosion rate observed in Tunu field. Results show that most of future Tunu wells are predicted to have WHSIP below 200 barg and 1.5 to 3 years’ production lifetime. Corrosion rate in Tunu field as measured using corrosion coupon in piping with corrosion inhibitor injection is found to be less than 1 mm/20 years. Therefore, corrosion allowance for Tunu pipeline is optimized from 5 to 3 mm for 10-years design lifetime. For exceptional circumstances where actual well WHSIP > 200 barg, other method of producing the well will be implemented. Hence, by integrating recent subsurface behavior (WHSIP and well lifetime) with surface understanding (corrosion rate), it was then proposed new pipeline design for Tunu development. This study has generated USD 13 million cost saving for pipeline procurement in 2020. Moreover, implementation of the new pipeline design reduces 40% of pipeline unit cost for future pipeline procurement. This study has become the basis for future well development projects in Tunu field which significantly prolong Mahakam's production sustainability.","PeriodicalId":10970,"journal":{"name":"Day 1 Tue, October 12, 2021","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Marginal Resources through Synergy between Subsurface and Surface Entities\",\"authors\":\"Roger Atasi, Albertino Prabowo, Mitterank Siboro\",\"doi\":\"10.2118/205672-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Tunu is one of the biggest gas fields in Indonesia with 1400 km2 area in Mahakam Delta, East Kalimantan. This field has been producing since 1990 with cumulative production of more than 9.5 tcf and 190 mbbl condensate by the end of 2020 from over 1000 operating wells. Today, Tunu field contributes for approximately 40% of Mahakam production. After 30 years of production, Tunu production level is currently in declining phase, shown by its yearly production profile which exhibits a declining trend since 2008. Furthermore, Tunu well development project was considered marginally economical due to depleting reserve per well. Thus, an integrated study was conducted in order to reduce surface expenditure cost of Tunu pipeline based on current operating parameters. The study consisted of WHSIP history matching to determine new pipeline design pressure, evaluation of future wells production lifetime, and adjustment of pipeline corrosion allowance based on actual corrosion rate observed in Tunu field. Results show that most of future Tunu wells are predicted to have WHSIP below 200 barg and 1.5 to 3 years’ production lifetime. Corrosion rate in Tunu field as measured using corrosion coupon in piping with corrosion inhibitor injection is found to be less than 1 mm/20 years. Therefore, corrosion allowance for Tunu pipeline is optimized from 5 to 3 mm for 10-years design lifetime. For exceptional circumstances where actual well WHSIP > 200 barg, other method of producing the well will be implemented. Hence, by integrating recent subsurface behavior (WHSIP and well lifetime) with surface understanding (corrosion rate), it was then proposed new pipeline design for Tunu development. This study has generated USD 13 million cost saving for pipeline procurement in 2020. Moreover, implementation of the new pipeline design reduces 40% of pipeline unit cost for future pipeline procurement. This study has become the basis for future well development projects in Tunu field which significantly prolong Mahakam's production sustainability.\",\"PeriodicalId\":10970,\"journal\":{\"name\":\"Day 1 Tue, October 12, 2021\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, October 12, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205672-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 12, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205672-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unlocking Marginal Resources through Synergy between Subsurface and Surface Entities
Tunu is one of the biggest gas fields in Indonesia with 1400 km2 area in Mahakam Delta, East Kalimantan. This field has been producing since 1990 with cumulative production of more than 9.5 tcf and 190 mbbl condensate by the end of 2020 from over 1000 operating wells. Today, Tunu field contributes for approximately 40% of Mahakam production. After 30 years of production, Tunu production level is currently in declining phase, shown by its yearly production profile which exhibits a declining trend since 2008. Furthermore, Tunu well development project was considered marginally economical due to depleting reserve per well. Thus, an integrated study was conducted in order to reduce surface expenditure cost of Tunu pipeline based on current operating parameters. The study consisted of WHSIP history matching to determine new pipeline design pressure, evaluation of future wells production lifetime, and adjustment of pipeline corrosion allowance based on actual corrosion rate observed in Tunu field. Results show that most of future Tunu wells are predicted to have WHSIP below 200 barg and 1.5 to 3 years’ production lifetime. Corrosion rate in Tunu field as measured using corrosion coupon in piping with corrosion inhibitor injection is found to be less than 1 mm/20 years. Therefore, corrosion allowance for Tunu pipeline is optimized from 5 to 3 mm for 10-years design lifetime. For exceptional circumstances where actual well WHSIP > 200 barg, other method of producing the well will be implemented. Hence, by integrating recent subsurface behavior (WHSIP and well lifetime) with surface understanding (corrosion rate), it was then proposed new pipeline design for Tunu development. This study has generated USD 13 million cost saving for pipeline procurement in 2020. Moreover, implementation of the new pipeline design reduces 40% of pipeline unit cost for future pipeline procurement. This study has become the basis for future well development projects in Tunu field which significantly prolong Mahakam's production sustainability.