面向单片集成应用的表面微加工兼容CMOS-MEMS工艺研究

D. Zhao, Xian Huang, Jun He, Li Zhang, Peng Liu, Fang Yang, Dacheng Zhang
{"title":"面向单片集成应用的表面微加工兼容CMOS-MEMS工艺研究","authors":"D. Zhao, Xian Huang, Jun He, Li Zhang, Peng Liu, Fang Yang, Dacheng Zhang","doi":"10.1109/NEMS.2014.6908861","DOIUrl":null,"url":null,"abstract":"In this work, compatible CMOS-MEMS process with surface micromachining is investigated. Surface micromachining method for cantilever fabrication has been merged with conventional CMOS process, and release of MEMS structure is conducted after CMOS process. We designed polysilicon MEMS structures as well as CMOS devices and circuits on a monolithic sensor chip for the investigation of the influence of stress induced by non-adequate post-CMOS annealing. The impact of step coverage and the releasing process on both the MEMS and CMOS components are also discussed.","PeriodicalId":22566,"journal":{"name":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"1 1","pages":"513-516"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on compatible CMOS-MEMS process with surface micromachining for the application of monolithic integration\",\"authors\":\"D. Zhao, Xian Huang, Jun He, Li Zhang, Peng Liu, Fang Yang, Dacheng Zhang\",\"doi\":\"10.1109/NEMS.2014.6908861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, compatible CMOS-MEMS process with surface micromachining is investigated. Surface micromachining method for cantilever fabrication has been merged with conventional CMOS process, and release of MEMS structure is conducted after CMOS process. We designed polysilicon MEMS structures as well as CMOS devices and circuits on a monolithic sensor chip for the investigation of the influence of stress induced by non-adequate post-CMOS annealing. The impact of step coverage and the releasing process on both the MEMS and CMOS components are also discussed.\",\"PeriodicalId\":22566,\"journal\":{\"name\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"volume\":\"1 1\",\"pages\":\"513-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2014.6908861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2014.6908861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了与表面微加工兼容的CMOS-MEMS工艺。将表面微加工方法与传统的CMOS工艺相结合,在CMOS工艺之后进行MEMS结构的释放。我们在单片传感器芯片上设计了多晶硅MEMS结构以及CMOS器件和电路,以研究CMOS后退火不充分引起的应力的影响。讨论了阶跃覆盖和释放过程对MEMS和CMOS元件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on compatible CMOS-MEMS process with surface micromachining for the application of monolithic integration
In this work, compatible CMOS-MEMS process with surface micromachining is investigated. Surface micromachining method for cantilever fabrication has been merged with conventional CMOS process, and release of MEMS structure is conducted after CMOS process. We designed polysilicon MEMS structures as well as CMOS devices and circuits on a monolithic sensor chip for the investigation of the influence of stress induced by non-adequate post-CMOS annealing. The impact of step coverage and the releasing process on both the MEMS and CMOS components are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信