旗形上齐次Ricci流的古解

S. Anastassiou, I. Chrysikos
{"title":"旗形上齐次Ricci流的古解","authors":"S. Anastassiou, I. Chrysikos","doi":"10.17398/2605-5686.36.1.99","DOIUrl":null,"url":null,"abstract":"For any flag manifold $M=G/K$ of a compact simple Lie group $G$ we describe non-collapsing ancient invariant solutions of the homogeneous unnormalized Ricci flow. Such solutions pass through an invariant Einstein metric on $M$, and by a result of Bohm-Lafuente-Simon ([BoLS17]) they must develop a Type I singularity in their extinction finite time, and also to the past. To illustrate the situation we engage ourselves with the global study of the dynamical system induced by the unnormalized Ricci flow on any flag manifold $M=G/K$ with second Betti number $b_{2}(M)=1$, for a generic initial invariant metric. We describe the corresponding dynamical systems and present non-collapsed ancient solutions, whose $\\alpha$-limit set consists of fixed points at infinity of $\\mathscr{M}^G$. We show that these fixed points correspond to invariant Einstein metrics and based on the Poincare compactification method, we study their stability properties, illuminating thus the structure of the system's phase space.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ancient solutions of the homogeneous Ricci flow on flag manifolds\",\"authors\":\"S. Anastassiou, I. Chrysikos\",\"doi\":\"10.17398/2605-5686.36.1.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any flag manifold $M=G/K$ of a compact simple Lie group $G$ we describe non-collapsing ancient invariant solutions of the homogeneous unnormalized Ricci flow. Such solutions pass through an invariant Einstein metric on $M$, and by a result of Bohm-Lafuente-Simon ([BoLS17]) they must develop a Type I singularity in their extinction finite time, and also to the past. To illustrate the situation we engage ourselves with the global study of the dynamical system induced by the unnormalized Ricci flow on any flag manifold $M=G/K$ with second Betti number $b_{2}(M)=1$, for a generic initial invariant metric. We describe the corresponding dynamical systems and present non-collapsed ancient solutions, whose $\\\\alpha$-limit set consists of fixed points at infinity of $\\\\mathscr{M}^G$. We show that these fixed points correspond to invariant Einstein metrics and based on the Poincare compactification method, we study their stability properties, illuminating thus the structure of the system's phase space.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17398/2605-5686.36.1.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17398/2605-5686.36.1.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对于紧单李群$G$的任意标志流形$M=G/K$,我们描述了齐次非归一化Ricci流的非坍缩古不变解。这样的解通过$M$上的不变爱因斯坦度规,并且根据Bohm-Lafuente-Simon ([BoLS17])的结果,它们必须在它们的灭绝有限时间内发展出I型奇点,并且也发展到过去。为了说明这种情况,我们对二阶Betti数$b_{2}(M)=1$的任意标志流形$M=G/K$上非归一化Ricci流诱导的动力系统进行了全局研究。我们描述了相应的动力系统并给出了非坍缩古解,其$\ α $-极限集由$\mathscr{M}^G$的无穷远不动点组成。我们证明了这些不动点对应于不变的爱因斯坦度量,并基于庞加莱紧化方法,研究了它们的稳定性,从而阐明了系统相空间的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ancient solutions of the homogeneous Ricci flow on flag manifolds
For any flag manifold $M=G/K$ of a compact simple Lie group $G$ we describe non-collapsing ancient invariant solutions of the homogeneous unnormalized Ricci flow. Such solutions pass through an invariant Einstein metric on $M$, and by a result of Bohm-Lafuente-Simon ([BoLS17]) they must develop a Type I singularity in their extinction finite time, and also to the past. To illustrate the situation we engage ourselves with the global study of the dynamical system induced by the unnormalized Ricci flow on any flag manifold $M=G/K$ with second Betti number $b_{2}(M)=1$, for a generic initial invariant metric. We describe the corresponding dynamical systems and present non-collapsed ancient solutions, whose $\alpha$-limit set consists of fixed points at infinity of $\mathscr{M}^G$. We show that these fixed points correspond to invariant Einstein metrics and based on the Poincare compactification method, we study their stability properties, illuminating thus the structure of the system's phase space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信