算子和与积的数值半径不等式

Wasim Audeh
{"title":"算子和与积的数值半径不等式","authors":"Wasim Audeh","doi":"10.4236/ALAMT.2019.93003","DOIUrl":null,"url":null,"abstract":"A numerical radius inequality due to Shebrawi and Albadawi says that: If Ai, Bi, Xi are bounded operators in Hilbert space, i = 1,2,..., n , and f,g be nonnegative continuous functions on [0, ∞) satisfying the relation f(t)g(t) = t (t∈[0, ∞)), then for all r≥1. We give sharper numerical radius inequality which states that: If Ai, Bi, Xi are bounded operators in Hilbert space, i = 1,2,..., n , and f,g be nonnegative continuous functions on [0, ∞) satisfying the relation f(t)g(t) = t (t∈[0, ∞)), then where . Moreover, we give many numerical radius inequalities which are sharper than related inequalities proved recently, and several applications are given.","PeriodicalId":65610,"journal":{"name":"线性代数与矩阵理论研究进展(英文)","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Radius Inequalities for Sums and Products of Operators\",\"authors\":\"Wasim Audeh\",\"doi\":\"10.4236/ALAMT.2019.93003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical radius inequality due to Shebrawi and Albadawi says that: If Ai, Bi, Xi are bounded operators in Hilbert space, i = 1,2,..., n , and f,g be nonnegative continuous functions on [0, ∞) satisfying the relation f(t)g(t) = t (t∈[0, ∞)), then for all r≥1. We give sharper numerical radius inequality which states that: If Ai, Bi, Xi are bounded operators in Hilbert space, i = 1,2,..., n , and f,g be nonnegative continuous functions on [0, ∞) satisfying the relation f(t)g(t) = t (t∈[0, ∞)), then where . Moreover, we give many numerical radius inequalities which are sharper than related inequalities proved recently, and several applications are given.\",\"PeriodicalId\":65610,\"journal\":{\"name\":\"线性代数与矩阵理论研究进展(英文)\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"线性代数与矩阵理论研究进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/ALAMT.2019.93003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"线性代数与矩阵理论研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ALAMT.2019.93003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

, n, f,g为[0,∞)上的非负连续函数,满足关系f(t)g(t) = t (t∈[0,∞)),则对于所有r≥1。, n和f,g是[0,∞)上的非负连续函数,满足关系f(t)g(t) = t (t∈[0,∞)),则其中。此外,我们还给出了许多比最近证明的相关不等式更尖锐的数值半径不等式,并给出了一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Radius Inequalities for Sums and Products of Operators
A numerical radius inequality due to Shebrawi and Albadawi says that: If Ai, Bi, Xi are bounded operators in Hilbert space, i = 1,2,..., n , and f,g be nonnegative continuous functions on [0, ∞) satisfying the relation f(t)g(t) = t (t∈[0, ∞)), then for all r≥1. We give sharper numerical radius inequality which states that: If Ai, Bi, Xi are bounded operators in Hilbert space, i = 1,2,..., n , and f,g be nonnegative continuous functions on [0, ∞) satisfying the relation f(t)g(t) = t (t∈[0, ∞)), then where . Moreover, we give many numerical radius inequalities which are sharper than related inequalities proved recently, and several applications are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信