多星绕组对船用水轮机永磁发电机可靠性的影响

Christophe Olmi, Franck Scuiller, Jean-Frédéric Charpentier
{"title":"多星绕组对船用水轮机永磁发电机可靠性的影响","authors":"Christophe Olmi,&nbsp;Franck Scuiller,&nbsp;Jean-Frédéric Charpentier","doi":"10.1016/j.ijome.2017.09.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>For Marine current turbine (MCT), low speed Surface-mounted Permanent Magnet generator is a solution to satisfy the efficiency and fault tolerant requirements. This is supposed to be true if the winding is made with several non-shifted three-phase stars that could be supplied with standard modular voltage source inverters. This paper investigates the impact of the star number on the MCT energy yield if the system is conceived to operate with disconnected inverters. For this purpose, a method to calculate the extracted power according to the tidal speed for a given star number and a given activated star number is detailed. A </span>rainflow counting<span> method is used to account the stress due to the tidal speed change on the star converter: the impact of the star number on the resilience capability of the MCT is then quantified. By assuming a ten-year period without converter repair, according to the introduced probabilistic approach, the star number increase improves the reliability and three-star configuration appears as a trade-off.</span></p></div>","PeriodicalId":100705,"journal":{"name":"International Journal of Marine Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijome.2017.09.006","citationCount":"2","resultStr":"{\"title\":\"Impact of a multi-star winding on the reliability of a permanent magnet generator for marine current turbine\",\"authors\":\"Christophe Olmi,&nbsp;Franck Scuiller,&nbsp;Jean-Frédéric Charpentier\",\"doi\":\"10.1016/j.ijome.2017.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>For Marine current turbine (MCT), low speed Surface-mounted Permanent Magnet generator is a solution to satisfy the efficiency and fault tolerant requirements. This is supposed to be true if the winding is made with several non-shifted three-phase stars that could be supplied with standard modular voltage source inverters. This paper investigates the impact of the star number on the MCT energy yield if the system is conceived to operate with disconnected inverters. For this purpose, a method to calculate the extracted power according to the tidal speed for a given star number and a given activated star number is detailed. A </span>rainflow counting<span> method is used to account the stress due to the tidal speed change on the star converter: the impact of the star number on the resilience capability of the MCT is then quantified. By assuming a ten-year period without converter repair, according to the introduced probabilistic approach, the star number increase improves the reliability and three-star configuration appears as a trade-off.</span></p></div>\",\"PeriodicalId\":100705,\"journal\":{\"name\":\"International Journal of Marine Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ijome.2017.09.006\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Marine Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214166917300747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Marine Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214166917300747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于船用水轮机(MCT)来说,低速表面贴装永磁发电机是满足效率和容错要求的一种解决方案。这应该是正确的,如果绕组是由几个非移位三相星,可以提供标准的模块化电压源逆变器。本文研究了如果系统被设想为与不连接的逆变器一起运行,星数对MCT能量产生的影响。为此,详细介绍了给定星数和给定激活星数下,根据潮汐速度计算提取功率的方法。采用雨流计数法计算潮汐速度变化对星形变换器的应力,从而量化星形数对MCT恢复能力的影响。根据引入的概率方法,假设十年不修理变流器,星数的增加提高了可靠性,而三星结构则是一种权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of a multi-star winding on the reliability of a permanent magnet generator for marine current turbine

For Marine current turbine (MCT), low speed Surface-mounted Permanent Magnet generator is a solution to satisfy the efficiency and fault tolerant requirements. This is supposed to be true if the winding is made with several non-shifted three-phase stars that could be supplied with standard modular voltage source inverters. This paper investigates the impact of the star number on the MCT energy yield if the system is conceived to operate with disconnected inverters. For this purpose, a method to calculate the extracted power according to the tidal speed for a given star number and a given activated star number is detailed. A rainflow counting method is used to account the stress due to the tidal speed change on the star converter: the impact of the star number on the resilience capability of the MCT is then quantified. By assuming a ten-year period without converter repair, according to the introduced probabilistic approach, the star number increase improves the reliability and three-star configuration appears as a trade-off.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信