{"title":"一个32.4 ppm/°C 3.2-1.6V自切碎弛豫振荡器,具有自适应电源产生","authors":"Keng-Jan Hsiao","doi":"10.1109/VLSIC.2012.6243766","DOIUrl":null,"url":null,"abstract":"A self-chopped relaxation oscillator with adaptive supply generation provides the stable output clock against variations in temperature and supply voltages. The frequency drift is less than ±0.1% for the supply voltage changing from 1.6 to 3.2 V and ±0.1% for a temperature range from -20 to 100°C, which is reduced by 83% with the self-chopped technique. This relaxation oscillator is implemented in a 60-nm CMOS technology with its active area equals to 0.048 mm2. It consumes 2.8 uA from a 1.6-V supply.","PeriodicalId":6347,"journal":{"name":"2012 Symposium on VLSI Circuits (VLSIC)","volume":"85 1","pages":"14-15"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"A 32.4 ppm/°C 3.2-1.6V self-chopped relaxation oscillator with adaptive supply generation\",\"authors\":\"Keng-Jan Hsiao\",\"doi\":\"10.1109/VLSIC.2012.6243766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A self-chopped relaxation oscillator with adaptive supply generation provides the stable output clock against variations in temperature and supply voltages. The frequency drift is less than ±0.1% for the supply voltage changing from 1.6 to 3.2 V and ±0.1% for a temperature range from -20 to 100°C, which is reduced by 83% with the self-chopped technique. This relaxation oscillator is implemented in a 60-nm CMOS technology with its active area equals to 0.048 mm2. It consumes 2.8 uA from a 1.6-V supply.\",\"PeriodicalId\":6347,\"journal\":{\"name\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"volume\":\"85 1\",\"pages\":\"14-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2012.6243766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Circuits (VLSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2012.6243766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 32.4 ppm/°C 3.2-1.6V self-chopped relaxation oscillator with adaptive supply generation
A self-chopped relaxation oscillator with adaptive supply generation provides the stable output clock against variations in temperature and supply voltages. The frequency drift is less than ±0.1% for the supply voltage changing from 1.6 to 3.2 V and ±0.1% for a temperature range from -20 to 100°C, which is reduced by 83% with the self-chopped technique. This relaxation oscillator is implemented in a 60-nm CMOS technology with its active area equals to 0.048 mm2. It consumes 2.8 uA from a 1.6-V supply.