X. Wen, Linkui Huang, Zixue Du, Liang Chen, Zhen Yang
{"title":"基于多体动力学模型的单轨车辆运行轮磨损参数优化研究","authors":"X. Wen, Linkui Huang, Zixue Du, Liang Chen, Zhen Yang","doi":"10.1177/14644193221119331","DOIUrl":null,"url":null,"abstract":"A nonlinear dynamic model of monorail vehicle and a finite element model of “running wheel-rail beam” system is established respectively, which is integrated into the Modefrontier platform. The total friction work and friction work deviation value are proposed as indicators for evaluating the wear and partial wear of the running wheels. Taking the total friction work and friction work deviation as the goals, the stability and curve passing performance of the monorail vehicle as constraints, and the structural parameters and dynamic parameters of the monorail vehicle as the optimization variables, an optimization model of partial wear of running wheel was established. The structural parameters and dynamic parameters of monorail vehicle are optimized through improved genetic algorithm. The analysis results show that the two indicators of the total friction work and friction work deviation value of the running wheels both decreased. Among them, the total friction work of the front right and rear right running wheel with severe partial wear was reduced by 20% and 21.2% respectively, the friction work deviation value was reduced by 19.30% and 27.2% respectively. The partial wear of the running wheel is improved significantly, and the purpose of reducing the partial wear of the running wheel is achieved.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on parameter optimization based on multi-body dynamics model of monorail vehicle aiming at reducing running wheel wear\",\"authors\":\"X. Wen, Linkui Huang, Zixue Du, Liang Chen, Zhen Yang\",\"doi\":\"10.1177/14644193221119331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear dynamic model of monorail vehicle and a finite element model of “running wheel-rail beam” system is established respectively, which is integrated into the Modefrontier platform. The total friction work and friction work deviation value are proposed as indicators for evaluating the wear and partial wear of the running wheels. Taking the total friction work and friction work deviation as the goals, the stability and curve passing performance of the monorail vehicle as constraints, and the structural parameters and dynamic parameters of the monorail vehicle as the optimization variables, an optimization model of partial wear of running wheel was established. The structural parameters and dynamic parameters of monorail vehicle are optimized through improved genetic algorithm. The analysis results show that the two indicators of the total friction work and friction work deviation value of the running wheels both decreased. Among them, the total friction work of the front right and rear right running wheel with severe partial wear was reduced by 20% and 21.2% respectively, the friction work deviation value was reduced by 19.30% and 27.2% respectively. The partial wear of the running wheel is improved significantly, and the purpose of reducing the partial wear of the running wheel is achieved.\",\"PeriodicalId\":54565,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14644193221119331\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193221119331","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on parameter optimization based on multi-body dynamics model of monorail vehicle aiming at reducing running wheel wear
A nonlinear dynamic model of monorail vehicle and a finite element model of “running wheel-rail beam” system is established respectively, which is integrated into the Modefrontier platform. The total friction work and friction work deviation value are proposed as indicators for evaluating the wear and partial wear of the running wheels. Taking the total friction work and friction work deviation as the goals, the stability and curve passing performance of the monorail vehicle as constraints, and the structural parameters and dynamic parameters of the monorail vehicle as the optimization variables, an optimization model of partial wear of running wheel was established. The structural parameters and dynamic parameters of monorail vehicle are optimized through improved genetic algorithm. The analysis results show that the two indicators of the total friction work and friction work deviation value of the running wheels both decreased. Among them, the total friction work of the front right and rear right running wheel with severe partial wear was reduced by 20% and 21.2% respectively, the friction work deviation value was reduced by 19.30% and 27.2% respectively. The partial wear of the running wheel is improved significantly, and the purpose of reducing the partial wear of the running wheel is achieved.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.