高温地球化学和宇宙化学中高亲铁性和强亲铜性元素简介

1区 地球科学 Q1 Earth and Planetary Sciences
J. Harvey, J. Day
{"title":"高温地球化学和宇宙化学中高亲铁性和强亲铜性元素简介","authors":"J. Harvey, J. Day","doi":"10.1515/9781501502095","DOIUrl":null,"url":null,"abstract":"In high-temperature geochemistry and cosmochemistry, highly siderophile and strongly chalophile elements can be defined as strongly preferring metal or sulfide, respectively, relative to silicate or oxide phases. The highly siderophile elements (HSE) comprise Re, Os, Ir, Ru, Pt, Rh, Pd, and Au and are defined by their extreme partitioning (> 104) into the metallic phase, but will also strongly partition into sulfide phases, in the absence of metal. The HSE are highly refractory, as indicated by their high melting and condensation temperatures and were therefore concentrated in early accreted nebular materials. Within the HSE are the platinum-group elements (PGE), which include the six elements lying in the d -block of the periodic table (groups 8, 9, and 10, periods 5 and 6), i.e., Os, Ir, Ru, Pt, Rh and Pd. These six elements tend to exist in the metallic state, or bond with chalcogens (S, Se, Te) or pnictogens (P, As, Sb, Bi). Rhenium and Au do not necessarily behave as coherently as the PGE, due to their differing electronegativity and oxidation states. For these reasons, a clear definition between the discussion of the PGE and the HSE (PGE, Re and Au) exists in the literature, especially in economic geology, industrial, or bio-medical studies. The strongly chalcophile elements can be considered to include S, Se, and Te. These three elements are distinguished from other chalcophile elements, such as Cd or Pb, because, like the HSE, they are all in very low abundances in the bulk silicate Earth (Fig. 1). By contrast with the HSE, S, Se, and Te all have far lower melting and condensation temperatures, classifying them as highly volatile elements (Table 1). Moreover, these elements are not equally distributed within chondrite meteorite groups (Fig. 2). Since their initial distribution in the Solar nebula, planetary formation and differentiation …","PeriodicalId":49624,"journal":{"name":"Reviews in Mineralogy & Geochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"INTRODUCTION TO HIGHLY SIDEROPHILE AND STRONGLY CHALCOPHILE ELEMENTS IN HIGH TEMPERATURE GEOCHEMISTRY AND COSMOCHEMISTRY\",\"authors\":\"J. Harvey, J. Day\",\"doi\":\"10.1515/9781501502095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-temperature geochemistry and cosmochemistry, highly siderophile and strongly chalophile elements can be defined as strongly preferring metal or sulfide, respectively, relative to silicate or oxide phases. The highly siderophile elements (HSE) comprise Re, Os, Ir, Ru, Pt, Rh, Pd, and Au and are defined by their extreme partitioning (> 104) into the metallic phase, but will also strongly partition into sulfide phases, in the absence of metal. The HSE are highly refractory, as indicated by their high melting and condensation temperatures and were therefore concentrated in early accreted nebular materials. Within the HSE are the platinum-group elements (PGE), which include the six elements lying in the d -block of the periodic table (groups 8, 9, and 10, periods 5 and 6), i.e., Os, Ir, Ru, Pt, Rh and Pd. These six elements tend to exist in the metallic state, or bond with chalcogens (S, Se, Te) or pnictogens (P, As, Sb, Bi). Rhenium and Au do not necessarily behave as coherently as the PGE, due to their differing electronegativity and oxidation states. For these reasons, a clear definition between the discussion of the PGE and the HSE (PGE, Re and Au) exists in the literature, especially in economic geology, industrial, or bio-medical studies. The strongly chalcophile elements can be considered to include S, Se, and Te. These three elements are distinguished from other chalcophile elements, such as Cd or Pb, because, like the HSE, they are all in very low abundances in the bulk silicate Earth (Fig. 1). By contrast with the HSE, S, Se, and Te all have far lower melting and condensation temperatures, classifying them as highly volatile elements (Table 1). Moreover, these elements are not equally distributed within chondrite meteorite groups (Fig. 2). Since their initial distribution in the Solar nebula, planetary formation and differentiation …\",\"PeriodicalId\":49624,\"journal\":{\"name\":\"Reviews in Mineralogy & Geochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mineralogy & Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/9781501502095\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mineralogy & Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/9781501502095","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 46

摘要

在高温地球化学和宇宙化学中,高亲铁性元素和强亲黄性元素可以被定义为相对于硅酸盐或氧化物相,强烈倾向于金属或硫化物。高亲铁元素(HSE)包括Re、Os、Ir、Ru、Pt、Rh、Pd和Au,它们在金属相中的分异极大(> 104),但在没有金属的情况下也会强烈分异为硫化相。HSE具有很高的难熔性,这表明它们的熔融和冷凝温度很高,因此它们集中在早期吸积的星云物质中。在HSE中是铂族元素(PGE),包括位于元素周期表d块的六个元素(第8、9和10族,第5和6周期),即Os、Ir、Ru、Pt、Rh和Pd。这六种元素倾向于以金属态存在,或与硫原(S、Se、Te)或烟原(P、As、Sb、Bi)结合。由于铼和金的电负性和氧化态不同,它们的行为不一定像PGE那样一致。由于这些原因,在文献中,特别是在经济地质学、工业或生物医学研究中,PGE和HSE (PGE、Re和Au)的讨论之间存在明确的定义。强亲铜元素包括S、Se和Te。这三种元素与其他亲铜元素(如Cd或Pb)不同,因为与HSE一样,它们在块状硅酸盐土中的丰度都很低(图1)。与HSE相比,S、Se和Te的熔融和冷凝温度都要低得多,属于高挥发性元素(表1)。此外,这些元素在球粒陨石群中的分布并不均匀(图2)。行星的形成和分化……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTRODUCTION TO HIGHLY SIDEROPHILE AND STRONGLY CHALCOPHILE ELEMENTS IN HIGH TEMPERATURE GEOCHEMISTRY AND COSMOCHEMISTRY
In high-temperature geochemistry and cosmochemistry, highly siderophile and strongly chalophile elements can be defined as strongly preferring metal or sulfide, respectively, relative to silicate or oxide phases. The highly siderophile elements (HSE) comprise Re, Os, Ir, Ru, Pt, Rh, Pd, and Au and are defined by their extreme partitioning (> 104) into the metallic phase, but will also strongly partition into sulfide phases, in the absence of metal. The HSE are highly refractory, as indicated by their high melting and condensation temperatures and were therefore concentrated in early accreted nebular materials. Within the HSE are the platinum-group elements (PGE), which include the six elements lying in the d -block of the periodic table (groups 8, 9, and 10, periods 5 and 6), i.e., Os, Ir, Ru, Pt, Rh and Pd. These six elements tend to exist in the metallic state, or bond with chalcogens (S, Se, Te) or pnictogens (P, As, Sb, Bi). Rhenium and Au do not necessarily behave as coherently as the PGE, due to their differing electronegativity and oxidation states. For these reasons, a clear definition between the discussion of the PGE and the HSE (PGE, Re and Au) exists in the literature, especially in economic geology, industrial, or bio-medical studies. The strongly chalcophile elements can be considered to include S, Se, and Te. These three elements are distinguished from other chalcophile elements, such as Cd or Pb, because, like the HSE, they are all in very low abundances in the bulk silicate Earth (Fig. 1). By contrast with the HSE, S, Se, and Te all have far lower melting and condensation temperatures, classifying them as highly volatile elements (Table 1). Moreover, these elements are not equally distributed within chondrite meteorite groups (Fig. 2). Since their initial distribution in the Solar nebula, planetary formation and differentiation …
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mineralogy & Geochemistry
Reviews in Mineralogy & Geochemistry 地学-地球化学与地球物理
CiteScore
8.30
自引率
0.00%
发文量
39
期刊介绍: RiMG is a series of multi-authored, soft-bound volumes containing concise reviews of the literature and advances in theoretical and/or applied mineralogy, crystallography, petrology, and geochemistry. The content of each volume consists of fully developed text which can be used for self-study, research, or as a text-book for graduate-level courses. RiMG volumes are typically produced in conjunction with a short course but can also be published without a short course. The series is jointly published by the Mineralogical Society of America (MSA) and the Geochemical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信