混合热电技术

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jia Liang, Shujia Yin, Chunlei Wan
{"title":"混合热电技术","authors":"Jia Liang, Shujia Yin, Chunlei Wan","doi":"10.1146/annurev-matsci-082319-111001","DOIUrl":null,"url":null,"abstract":"Constructing hybrid composites with organic and inorganic materials at different length scales provides unconventional opportunities in the field of thermoelectric materials, which are classified as hybrid crystal, superlattice, and nanocomposite. A variety of new techniques have been proposed to fabricate hybrid thermoelectric materials with homogeneous microstructures and intimate interfaces, which are critical for good thermoelectric performance. The combination of organic and inorganic materials at the nano or atomic scale can cause strong perturbation in the structural, electron, and phonon characteristics, providing new mechanisms to decouple electrical and thermal transport properties that are not attainable in the pure organic or inorganic counterparts. Because of their increasing thermoelectric performance, compositional diversity, mechanical flexibility, and ease of fabrication, hybrid materials have become the most promising candidates for flexible energy harvesting and solid-state cooling.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"389 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hybrid Thermoelectrics\",\"authors\":\"Jia Liang, Shujia Yin, Chunlei Wan\",\"doi\":\"10.1146/annurev-matsci-082319-111001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing hybrid composites with organic and inorganic materials at different length scales provides unconventional opportunities in the field of thermoelectric materials, which are classified as hybrid crystal, superlattice, and nanocomposite. A variety of new techniques have been proposed to fabricate hybrid thermoelectric materials with homogeneous microstructures and intimate interfaces, which are critical for good thermoelectric performance. The combination of organic and inorganic materials at the nano or atomic scale can cause strong perturbation in the structural, electron, and phonon characteristics, providing new mechanisms to decouple electrical and thermal transport properties that are not attainable in the pure organic or inorganic counterparts. Because of their increasing thermoelectric performance, compositional diversity, mechanical flexibility, and ease of fabrication, hybrid materials have become the most promising candidates for flexible energy harvesting and solid-state cooling.\",\"PeriodicalId\":8055,\"journal\":{\"name\":\"Annual Review of Materials Research\",\"volume\":\"389 1\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-matsci-082319-111001\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-082319-111001","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

用不同长度尺度的有机和无机材料构建杂化复合材料为热电材料领域提供了非常规的机会,热电材料被分类为杂化晶体、超晶格和纳米复合材料。人们提出了各种新技术来制备具有均匀微观结构和紧密界面的杂化热电材料,这是良好热电性能的关键。有机和无机材料在纳米或原子尺度上的结合可以引起结构、电子和声子特性的强烈扰动,提供了在纯有机或无机材料中无法实现的电和热传输特性解耦的新机制。由于其不断提高的热电性能、成分多样性、机械灵活性和易于制造,混合材料已成为柔性能量收集和固态冷却最有前途的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Thermoelectrics
Constructing hybrid composites with organic and inorganic materials at different length scales provides unconventional opportunities in the field of thermoelectric materials, which are classified as hybrid crystal, superlattice, and nanocomposite. A variety of new techniques have been proposed to fabricate hybrid thermoelectric materials with homogeneous microstructures and intimate interfaces, which are critical for good thermoelectric performance. The combination of organic and inorganic materials at the nano or atomic scale can cause strong perturbation in the structural, electron, and phonon characteristics, providing new mechanisms to decouple electrical and thermal transport properties that are not attainable in the pure organic or inorganic counterparts. Because of their increasing thermoelectric performance, compositional diversity, mechanical flexibility, and ease of fabrication, hybrid materials have become the most promising candidates for flexible energy harvesting and solid-state cooling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信