{"title":"Hadamard空间中有限单调算子族包含问题解的强收敛性","authors":"S. Ranjbar","doi":"10.2478/auom-2021-0028","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, in the setting of Hadamard spaces, a iterative scheme is proposed for approximating a solution of the inclusion problem for a finite family of monotone operators which is a unique solution of a variational inequality. Some applications in convex minimization and fixed point theory are also presented to support the main result.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"21 1","pages":"231 - 248"},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strong convergence to a solution of the inclusion problem for a finite family of monotone operators in Hadamard spaces\",\"authors\":\"S. Ranjbar\",\"doi\":\"10.2478/auom-2021-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, in the setting of Hadamard spaces, a iterative scheme is proposed for approximating a solution of the inclusion problem for a finite family of monotone operators which is a unique solution of a variational inequality. Some applications in convex minimization and fixed point theory are also presented to support the main result.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"21 1\",\"pages\":\"231 - 248\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Strong convergence to a solution of the inclusion problem for a finite family of monotone operators in Hadamard spaces
Abstract In this paper, in the setting of Hadamard spaces, a iterative scheme is proposed for approximating a solution of the inclusion problem for a finite family of monotone operators which is a unique solution of a variational inequality. Some applications in convex minimization and fixed point theory are also presented to support the main result.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.