图像区域分割的层次聚类模型

J. Randall, L. Guan, Xing Zhang, W. Li
{"title":"图像区域分割的层次聚类模型","authors":"J. Randall, L. Guan, Xing Zhang, W. Li","doi":"10.1109/ICME.2002.1035876","DOIUrl":null,"url":null,"abstract":"The hierarchical cluster model (HCM), a neural network inspired by the human brain (see Sutton, J., Harvard Medical School, MIT, Neural Systems Group, Technical Report, 1995), is demonstrated for the purpose of region segmentation in digital images. Starting with an over segmented image, regions are merged based on evidence of a valid edge between the two regions. Unlike Sutton's work, in which the HCM is used to recall a set of pre-trained memory patterns, the HCM in our work demonstrates unsupervised decision making capabilities.","PeriodicalId":90694,"journal":{"name":"Proceedings. IEEE International Conference on Multimedia and Expo","volume":"93 1","pages":"693-696 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The hierarchical cluster model for image region segmentation\",\"authors\":\"J. Randall, L. Guan, Xing Zhang, W. Li\",\"doi\":\"10.1109/ICME.2002.1035876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hierarchical cluster model (HCM), a neural network inspired by the human brain (see Sutton, J., Harvard Medical School, MIT, Neural Systems Group, Technical Report, 1995), is demonstrated for the purpose of region segmentation in digital images. Starting with an over segmented image, regions are merged based on evidence of a valid edge between the two regions. Unlike Sutton's work, in which the HCM is used to recall a set of pre-trained memory patterns, the HCM in our work demonstrates unsupervised decision making capabilities.\",\"PeriodicalId\":90694,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"volume\":\"93 1\",\"pages\":\"693-696 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2002.1035876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2002.1035876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

层次聚类模型(HCM)是一种受人脑启发的神经网络(见Sutton, J., Harvard Medical School, MIT, neural Systems Group, Technical Report, 1995),用于数字图像的区域分割。从过度分割的图像开始,基于两个区域之间有效边缘的证据合并区域。与萨顿的研究不同,在萨顿的研究中,HCM被用来回忆一组预先训练的记忆模式,而我们的研究中,HCM展示了无监督的决策能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The hierarchical cluster model for image region segmentation
The hierarchical cluster model (HCM), a neural network inspired by the human brain (see Sutton, J., Harvard Medical School, MIT, Neural Systems Group, Technical Report, 1995), is demonstrated for the purpose of region segmentation in digital images. Starting with an over segmented image, regions are merged based on evidence of a valid edge between the two regions. Unlike Sutton's work, in which the HCM is used to recall a set of pre-trained memory patterns, the HCM in our work demonstrates unsupervised decision making capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信