非线性二阶四点Dirichlet BVPs的良序单调迭代技术

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Amit Verma, Nazia Urus
{"title":"非线性二阶四点Dirichlet BVPs的良序单调迭代技术","authors":"Amit Verma, Nazia Urus","doi":"10.3846/mma.2022.14198","DOIUrl":null,"url":null,"abstract":"In this article, we develop a monotone iterative technique (MI-technique) with lower and upper (L-U) solutions for a class of four-point Dirichlet nonlinear boundary value problems (NLBVPs), defined as, ... where ..., ... the non linear term ...is continuous function in x, one sided Lipschitz in ψ and Lipschitz in . To show the existence result, we construct Green’s function and iterative sequences for the corresponding linear problem. We use quasilinearization to construct these iterative schemes. We prove maximum principle and establish monotonicity of sequences of lower solution and upper solution such that... Then under certain sufficient conditions we prove that these sequences converge uniformly to the solution ψ(x) in a specific region where","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Well Ordered Monotone iterative Technique for nonlinear second order Four Point Dirichlet BVPs\",\"authors\":\"Amit Verma, Nazia Urus\",\"doi\":\"10.3846/mma.2022.14198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we develop a monotone iterative technique (MI-technique) with lower and upper (L-U) solutions for a class of four-point Dirichlet nonlinear boundary value problems (NLBVPs), defined as, ... where ..., ... the non linear term ...is continuous function in x, one sided Lipschitz in ψ and Lipschitz in . To show the existence result, we construct Green’s function and iterative sequences for the corresponding linear problem. We use quasilinearization to construct these iterative schemes. We prove maximum principle and establish monotonicity of sequences of lower solution and upper solution such that... Then under certain sufficient conditions we prove that these sequences converge uniformly to the solution ψ(x) in a specific region where\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2022.14198\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2022.14198","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们发展了一类四点Dirichlet非线性边值问题(NLBVPs)的具有上下(L-U)解的单调迭代技术(mi -技术),定义为,…在那里……,……非线性项。是在x中的连续函数,在ψ中的单侧Lipschitz和。为了证明存在性,我们构造了相应线性问题的格林函数和迭代序列。我们使用拟线性化来构造这些迭代格式。证明了极大值原理,建立了下解和上解序列的单调性。然后在一定的充分条件下,证明了这些序列在一个特定的区域内一致收敛于ψ(x)的解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well Ordered Monotone iterative Technique for nonlinear second order Four Point Dirichlet BVPs
In this article, we develop a monotone iterative technique (MI-technique) with lower and upper (L-U) solutions for a class of four-point Dirichlet nonlinear boundary value problems (NLBVPs), defined as, ... where ..., ... the non linear term ...is continuous function in x, one sided Lipschitz in ψ and Lipschitz in . To show the existence result, we construct Green’s function and iterative sequences for the corresponding linear problem. We use quasilinearization to construct these iterative schemes. We prove maximum principle and establish monotonicity of sequences of lower solution and upper solution such that... Then under certain sufficient conditions we prove that these sequences converge uniformly to the solution ψ(x) in a specific region where
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信